Create inference.py
Browse filesYou can input the image path and get the face shape classfication
- inference.py +82 -0
inference.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import torch
|
4 |
+
import torchvision.transforms as T
|
5 |
+
from PIL import Image
|
6 |
+
import torch.nn.functional as F # For softmax
|
7 |
+
|
8 |
+
# Define device
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# Model and transformation setup
|
12 |
+
def download_model_if_not_exists(url, model_path):
|
13 |
+
"""Download model from Hugging Face repository if it doesn't exist locally."""
|
14 |
+
if not os.path.exists(model_path):
|
15 |
+
print("Model not found locally, downloading from Hugging Face...")
|
16 |
+
response = requests.get(url)
|
17 |
+
if response.status_code == 200:
|
18 |
+
with open(model_path, 'wb') as f:
|
19 |
+
f.write(response.content)
|
20 |
+
print(f"Model downloaded and saved to {model_path}")
|
21 |
+
else:
|
22 |
+
print("Failed to download model. Please check the URL.")
|
23 |
+
else:
|
24 |
+
print("Model already exists locally.")
|
25 |
+
|
26 |
+
def load_model(model_path):
|
27 |
+
"""Load model from the given path."""
|
28 |
+
model = torch.load(model_path, map_location=torch.device('cpu'))
|
29 |
+
model.eval() # Set model to evaluation mode
|
30 |
+
model.to(device)
|
31 |
+
return model
|
32 |
+
|
33 |
+
def preprocess_image(image_path):
|
34 |
+
transform = T.Compose([
|
35 |
+
T.Resize((224, 224)), # Resize image to 224x224
|
36 |
+
T.ToTensor(), # Convert image to Tensor
|
37 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize
|
38 |
+
])
|
39 |
+
image = Image.open(image_path).convert("RGB") # Open and convert image to RGB
|
40 |
+
return transform(image).unsqueeze(0) # Add batch dimension
|
41 |
+
|
42 |
+
def get_probabilities(logits):
|
43 |
+
"""Apply softmax to get probabilities."""
|
44 |
+
probabilities = F.softmax(logits, dim=1)
|
45 |
+
percentages = probabilities * 100
|
46 |
+
return percentages
|
47 |
+
|
48 |
+
def predict(image_path, model, class_names):
|
49 |
+
"""Make prediction using the trained model."""
|
50 |
+
image_tensor = preprocess_image(image_path).to(device)
|
51 |
+
model.eval()
|
52 |
+
with torch.inference_mode(): # Disable gradient calculations
|
53 |
+
outputs = model(image_tensor)
|
54 |
+
percentages = get_probabilities(outputs)
|
55 |
+
_, predicted_class = torch.max(outputs, 1) # Get the index of the highest logit
|
56 |
+
predicted_label = class_names[predicted_class.item()]
|
57 |
+
return predicted_label, percentages
|
58 |
+
|
59 |
+
# Define class names
|
60 |
+
class_names = ['Heart', 'Oblong', 'Oval', 'Round', 'Square']
|
61 |
+
|
62 |
+
# Path to the model file
|
63 |
+
model_path = r"model_85_nn_.pth" # Update this with the correct model path
|
64 |
+
model_url = "https://huggingface.co/fahd9999/model_85_nn_/resolve/main/model_85_nn_.pth?download=true"
|
65 |
+
|
66 |
+
# Download the model only if it doesn't exist locally
|
67 |
+
download_model_if_not_exists(model_url, model_path)
|
68 |
+
|
69 |
+
# Load the model
|
70 |
+
model = load_model(model_path)
|
71 |
+
|
72 |
+
def main(image_path):
|
73 |
+
"""Run the prediction process."""
|
74 |
+
predicted_label, percentages = predict(image_path, model, class_names)
|
75 |
+
result = {class_names[i]: percentages[0, i].item() for i in range(len(class_names))}
|
76 |
+
sorted_result = dict(sorted(result.items(), key=lambda item: item[1], reverse=True))
|
77 |
+
print(sorted_result)
|
78 |
+
|
79 |
+
# Call the function with the path to the image
|
80 |
+
if __name__ == "__main__":
|
81 |
+
image_path = "path_to_your_image.jpg" # Update this with your image path
|
82 |
+
main(image_path)
|