wmt19-en-de / README.md
- en
- de
- translation
- wmt19
- facebook
license: apache-2.0
- wmt19
- bleu
thumbnail: https://huggingface.co/front/thumbnails/facebook.png
## Model description
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for en-de.
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
The abbreviation FSMT stands for FairSeqMachineTranslation
All four models are available:
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
## Intended uses & limitations
#### How to use
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "facebook/wmt19-en-de"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = "Machine learning is great, isn't it?"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # Maschinelles Lernen ist großartig, oder?
#### Limitations and bias
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
## Training data
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
## Eval results
pair | fairseq | transformers
en-de | [43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862) | 42.83
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking
The score was calculated using this code:
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
title={Facebook FAIR's WMT19 News Translation Task Submission},
author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey},
booktitle={Proc. of WMT},
- port model ensemble (fairseq uses 4 model checkpoints)