patrickvonplaten
commited on
Commit
·
6f0b794
1
Parent(s):
87f7f02
Update README.md
Browse files
README.md
CHANGED
@@ -31,13 +31,13 @@ The original model can be found under https://github.com/pytorch/fairseq/tree/ma
|
|
31 |
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
32 |
|
33 |
```python
|
34 |
-
from transformers import
|
35 |
from datasets import load_dataset
|
36 |
import soundfile as sf
|
37 |
import torch
|
38 |
|
39 |
-
# load model and
|
40 |
-
|
41 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
42 |
|
43 |
# define function to read in sound file
|
@@ -51,14 +51,14 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
51 |
ds = ds.map(map_to_array)
|
52 |
|
53 |
# tokenize
|
54 |
-
input_values =
|
55 |
|
56 |
# retrieve logits
|
57 |
logits = model(input_values).logits
|
58 |
|
59 |
# take argmax and decode
|
60 |
predicted_ids = torch.argmax(logits, dim=-1)
|
61 |
-
transcription =
|
62 |
```
|
63 |
|
64 |
## Evaluation
|
@@ -67,7 +67,7 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
67 |
|
68 |
```python
|
69 |
from datasets import load_dataset
|
70 |
-
from transformers import Wav2Vec2ForCTC,
|
71 |
import soundfile as sf
|
72 |
import torch
|
73 |
from jiwer import wer
|
@@ -76,7 +76,7 @@ from jiwer import wer
|
|
76 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
77 |
|
78 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
|
79 |
-
|
80 |
|
81 |
def map_to_array(batch):
|
82 |
speech, _ = sf.read(batch["file"])
|
@@ -86,7 +86,7 @@ def map_to_array(batch):
|
|
86 |
librispeech_eval = librispeech_eval.map(map_to_array)
|
87 |
|
88 |
def map_to_pred(batch):
|
89 |
-
inputs =
|
90 |
input_values = inputs.input_values.to("cuda")
|
91 |
attention_mask = inputs.attention_mask.to("cuda")
|
92 |
|
@@ -94,7 +94,7 @@ def map_to_pred(batch):
|
|
94 |
logits = model(input_values, attention_mask=attention_mask).logits
|
95 |
|
96 |
predicted_ids = torch.argmax(logits, dim=-1)
|
97 |
-
transcription =
|
98 |
batch["transcription"] = transcription
|
99 |
return batch
|
100 |
|
|
|
31 |
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
32 |
|
33 |
```python
|
34 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
35 |
from datasets import load_dataset
|
36 |
import soundfile as sf
|
37 |
import torch
|
38 |
|
39 |
+
# load model and processor
|
40 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
41 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
42 |
|
43 |
# define function to read in sound file
|
|
|
51 |
ds = ds.map(map_to_array)
|
52 |
|
53 |
# tokenize
|
54 |
+
input_values = processor(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
|
55 |
|
56 |
# retrieve logits
|
57 |
logits = model(input_values).logits
|
58 |
|
59 |
# take argmax and decode
|
60 |
predicted_ids = torch.argmax(logits, dim=-1)
|
61 |
+
transcription = processor.batch_decode(predicted_ids)
|
62 |
```
|
63 |
|
64 |
## Evaluation
|
|
|
67 |
|
68 |
```python
|
69 |
from datasets import load_dataset
|
70 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
71 |
import soundfile as sf
|
72 |
import torch
|
73 |
from jiwer import wer
|
|
|
76 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
77 |
|
78 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
|
79 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
80 |
|
81 |
def map_to_array(batch):
|
82 |
speech, _ = sf.read(batch["file"])
|
|
|
86 |
librispeech_eval = librispeech_eval.map(map_to_array)
|
87 |
|
88 |
def map_to_pred(batch):
|
89 |
+
inputs = processor(batch["speech"], return_tensors="pt", padding="longest")
|
90 |
input_values = inputs.input_values.to("cuda")
|
91 |
attention_mask = inputs.attention_mask.to("cuda")
|
92 |
|
|
|
94 |
logits = model(input_values, attention_mask=attention_mask).logits
|
95 |
|
96 |
predicted_ids = torch.argmax(logits, dim=-1)
|
97 |
+
transcription = processor.batch_decode(predicted_ids)
|
98 |
batch["transcription"] = transcription
|
99 |
return batch
|
100 |
|