ybelkada commited on
Commit
6f0df79
·
1 Parent(s): d5c9889

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -20,12 +20,12 @@ license: apache-2.0
20
  # TL;DR
21
 
22
 
 
 
23
  | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-beancans.png" alt="Snow" width="600" height="600"> | <img src="https://s3.amazonaws.com/moonup/production/uploads/62441d1d9fdefb55a0b7d12c/wHXbJx1oXqHCYNeUNKHs8.png" alt="Forest" width="600" height="600"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car-seg.png" alt="Mountains" width="600" height="600"> |
24
  |---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
25
 
26
 
27
- [Link to original repository](https://github.com/facebookresearch/segment-anything)
28
-
29
  The **Segment Anything Model (SAM)** produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a [dataset](https://segment-anything.com/dataset/index.html) of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks.
30
  The abstract of the paper states:
31
 
 
20
  # TL;DR
21
 
22
 
23
+ [Link to original repository](https://github.com/facebookresearch/segment-anything)
24
+
25
  | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-beancans.png" alt="Snow" width="600" height="600"> | <img src="https://s3.amazonaws.com/moonup/production/uploads/62441d1d9fdefb55a0b7d12c/wHXbJx1oXqHCYNeUNKHs8.png" alt="Forest" width="600" height="600"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car-seg.png" alt="Mountains" width="600" height="600"> |
26
  |---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
27
 
28
 
 
 
29
  The **Segment Anything Model (SAM)** produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a [dataset](https://segment-anything.com/dataset/index.html) of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks.
30
  The abstract of the paper states:
31