ArantxaCasanova
First model version
a00ee36
raw history blame
No virus
56.2 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# All contributions by Andy Brock:
# Copyright (c) 2019 Andy Brock
#
# MIT License
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" Utilities file
This file contains utility functions for bookkeeping, logging, and data loading.
Methods which directly affect training should either go in layers, the model,
or train_fns.py.
"""
from __future__ import print_function
import sys
import os
import numpy as np
import time
import datetime
import json
import pickle
from argparse import ArgumentParser
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
def prepare_parser():
usage = "Parser for all scripts."
parser = ArgumentParser(description=usage)
parser.add_argument(
"--json_config",
type=str,
default="",
help="Json config from where to load the configuration parameters.",
)
### Dataset/Dataloader stuff ###
parser.add_argument(
"--resolution",
type=int,
default=64,
help="Resolution to train with " "(default: %(default)s)",
)
parser.add_argument(
"--augment",
action="store_true",
default=False,
help="Augment with random crops and flips (default: %(default)s)",
)
parser.add_argument(
"--num_workers",
type=int,
default=8,
help="Number of dataloader workers; consider using less for HDF5 "
"(default: %(default)s)",
)
parser.add_argument(
"--no_pin_memory",
action="store_false",
dest="pin_memory",
default=True,
help="Pin data into memory through dataloader? (default: %(default)s)",
)
parser.add_argument(
"--shuffle",
action="store_true",
default=False,
help="Shuffle the data (strongly recommended)? (default: %(default)s)",
)
parser.add_argument(
"--load_in_mem",
action="store_true",
default=False,
help="Load all data into memory? (default: %(default)s)",
)
parser.add_argument(
"--use_multiepoch_sampler",
action="store_true",
default=False,
help="Use the multi-epoch sampler for dataloader? (default: %(default)s)",
)
parser.add_argument(
"--use_checkpointable_sampler",
action="store_true",
default=False,
help="Use the checkpointable sampler for dataloader? (default: %(default)s)",
)
parser.add_argument(
"--use_balanced_sampler",
action="store_true",
default=False,
help="Use the class balanced sampler for dataloader? (default: %(default)s)",
)
parser.add_argument(
"--longtail_temperature",
type=int,
default=1,
help="Temperature to relax longtail_distribution",
)
parser.add_argument(
"--longtail",
action="store_true",
default=False,
help="Use long-tail version of the dataset",
)
parser.add_argument(
"--longtail_gen",
action="store_true",
default=False,
help="Use long-tail version of class conditioning sampling for generator.",
)
parser.add_argument(
"--custom_distrib_gen",
action="store_true",
default=False,
help="Use custom distribution for sampling class conditionings in generator.",
)
### Data augmentation ###
parser.add_argument(
"--DiffAugment", type=str, default="", help="DiffAugment policy"
)
parser.add_argument(
"--DA",
action="store_true",
default=False,
help="Diff Augment for GANs (default: %(default)s)",
)
parser.add_argument(
"--hflips",
action="store_true",
default=False,
help="Use horizontal flips in data augmentation." "(default: %(default)s)",
)
### IC-GAN arguments ###
parser.add_argument(
"--instance_cond",
action="store_true",
default=False,
help="Use instance features as conditioning",
)
parser.add_argument(
"--feature_augmentation",
action="store_true",
default=False,
help="use hflips in instance conditionings (default: %(default)s)",
)
parser.add_argument(
"--which_knn_balance",
type=str,
default="instance_balance",
choices=["instance_balance", "nnclass_balance"],
help="Class balancing either done at the instance level or at the class level.",
)
parser.add_argument(
"--G_shared_feat",
action="store_true",
default=False,
help="Use fully connected layer for conditioning instance features in G? (default: %(default)s)",
)
parser.add_argument(
"--shared_dim_feat",
type=int,
default=2048,
help="G"
"s fully connected layer output dimensionality for instance features"
"(default: %(default)s)",
)
parser.add_argument(
"--k_nn",
type=int,
default=50,
help="Number of neigbors for each instance" "(default: %(default)s)",
)
parser.add_argument(
"--feature_extractor",
type=str,
default="classification",
choices=["classification", "selfsupervised"],
help="Choice of feature extractor",
)
parser.add_argument(
"--backbone_feature_extractor",
type=str,
default="resnet50",
choices=["resnet50"],
help="Choice of feature extractor backbone",
)
parser.add_argument(
"--eval_instance_set",
type=str,
default="train",
help="(Eval) Dataset split from which to draw conditioning instances (default: %(default)s)",
)
parser.add_argument(
"--kmeans_subsampled",
type=int,
default=-1,
help="Number of kmeans centers if using subsampled training instances (default: %(default)s)",
)
parser.add_argument(
"--n_subsampled_data",
type=float,
default=-1,
help="Percent of instances used at test time",
)
### COCO_Stuff evaluation ###
parser.add_argument(
"--filter_hd",
type=int,
default=-1,
help="Hamming distance to filter val test in COCO_Stuff (by default no filtering) (default: %(default)s)",
)
### Model stuff ###
parser.add_argument(
"--model",
type=str,
default="BigGAN",
help="Name of the model module (default: %(default)s)",
)
parser.add_argument(
"--G_param",
type=str,
default="SN",
help="Parameterization style to use for G, spectral norm (SN) or SVD (SVD)"
" or None (default: %(default)s)",
)
parser.add_argument(
"--D_param",
type=str,
default="SN",
help="Parameterization style to use for D, spectral norm (SN) or SVD (SVD)"
" or None (default: %(default)s)",
)
parser.add_argument(
"--G_ch",
type=int,
default=64,
help="Channel multiplier for G (default: %(default)s)",
)
parser.add_argument(
"--D_ch",
type=int,
default=64,
help="Channel multiplier for D (default: %(default)s)",
)
parser.add_argument(
"--G_depth",
type=int,
default=1,
help="Number of resblocks per stage in G? (default: %(default)s)",
)
parser.add_argument(
"--D_depth",
type=int,
default=1,
help="Number of resblocks per stage in D? (default: %(default)s)",
)
parser.add_argument(
"--D_thin",
action="store_false",
dest="D_wide",
default=True,
help="Use the SN-GAN channel pattern for D? (default: %(default)s)",
)
parser.add_argument(
"--G_shared",
action="store_true",
default=True,
help="Use shared embeddings in G? (default: %(default)s)",
)
parser.add_argument(
"--shared_dim",
type=int,
default=0,
help="G"
"s shared embedding dimensionality; if 0, will be equal to dim_z. "
"(default: %(default)s)",
)
parser.add_argument(
"--dim_z", type=int, default=120, help="Noise dimensionality: %(default)s)"
)
parser.add_argument(
"--z_var", type=float, default=1.0, help="Noise variance: %(default)s)"
)
parser.add_argument(
"--hier",
action="store_true",
default=False,
help="Use hierarchical z in G? (default: %(default)s)",
)
parser.add_argument(
"--syncbn",
action="store_true",
default=False,
help="Sync batch norm? (default: %(default)s)",
)
parser.add_argument(
"--cross_replica",
action="store_true",
default=False,
help="Cross_replica batchnorm in G?(default: %(default)s)",
)
parser.add_argument(
"--mybn",
action="store_true",
default=False,
help="Use my batchnorm (which supports standing stats?) %(default)s)",
)
parser.add_argument(
"--G_nl",
type=str,
default="relu",
help="Activation function for G (default: %(default)s)",
)
parser.add_argument(
"--D_nl",
type=str,
default="relu",
help="Activation function for D (default: %(default)s)",
)
parser.add_argument(
"--G_attn",
type=str,
default="64",
help="What resolutions to use attention on for G (underscore separated) "
"(default: %(default)s)",
)
parser.add_argument(
"--D_attn",
type=str,
default="64",
help="What resolutions to use attention on for D (underscore separated) "
"(default: %(default)s)",
)
parser.add_argument(
"--norm_style",
type=str,
default="bn",
help="Normalizer style for G, one of bn [batchnorm], in [instancenorm], "
"ln [layernorm], gn [groupnorm] (default: %(default)s)",
)
### Model init stuff ###
parser.add_argument(
"--seed",
type=int,
default=0,
help="Random seed to use; affects both initialization and "
" dataloading. (default: %(default)s)",
)
parser.add_argument(
"--G_init",
type=str,
default="ortho",
help="Init style to use for G (default: %(default)s)",
)
parser.add_argument(
"--D_init",
type=str,
default="ortho",
help="Init style to use for D(default: %(default)s)",
)
parser.add_argument(
"--skip_init",
action="store_true",
default=False,
help="Skip initialization, ideal for testing when ortho init was used "
"(default: %(default)s)",
)
### Optimizer stuff ###
parser.add_argument(
"--G_lr",
type=float,
default=5e-5,
help="Learning rate to use for Generator (default: %(default)s)",
)
parser.add_argument(
"--D_lr",
type=float,
default=2e-4,
help="Learning rate to use for Discriminator (default: %(default)s)",
)
parser.add_argument(
"--G_B1",
type=float,
default=0.0,
help="Beta1 to use for Generator (default: %(default)s)",
)
parser.add_argument(
"--D_B1",
type=float,
default=0.0,
help="Beta1 to use for Discriminator (default: %(default)s)",
)
parser.add_argument(
"--G_B2",
type=float,
default=0.999,
help="Beta2 to use for Generator (default: %(default)s)",
)
parser.add_argument(
"--D_B2",
type=float,
default=0.999,
help="Beta2 to use for Discriminator (default: %(default)s)",
)
### Batch size, parallel, and precision stuff ###
parser.add_argument(
"--batch_size",
type=int,
default=64,
help="Default overall batchsize (default: %(default)s)",
)
parser.add_argument(
"--G_batch_size",
type=int,
default=0,
help="Batch size to use for G; if 0, same as D (default: %(default)s)",
)
parser.add_argument(
"--num_G_accumulations",
type=int,
default=1,
help="Number of passes to accumulate G"
"s gradients over "
"(default: %(default)s)",
)
parser.add_argument(
"--num_D_steps",
type=int,
default=2,
help="Number of D steps per G step (default: %(default)s)",
)
parser.add_argument(
"--num_D_accumulations",
type=int,
default=1,
help="Number of passes to accumulate D"
"s gradients over "
"(default: %(default)s)",
)
parser.add_argument(
"--split_D",
action="store_true",
default=False,
help="Run D twice rather than concatenating inputs? (default: %(default)s)",
)
parser.add_argument(
"--num_epochs",
type=int,
default=100,
help="Number of epochs to train for (default: %(default)s)",
)
parser.add_argument(
"--parallel",
action="store_true",
default=False,
help="Train with multiple GPUs (default: %(default)s)",
)
parser.add_argument(
"--G_fp16",
action="store_true",
default=False,
help="Train with half-precision in G? (default: %(default)s)",
)
parser.add_argument(
"--D_fp16",
action="store_true",
default=False,
help="Train with half-precision in D? (default: %(default)s)",
)
parser.add_argument(
"--D_mixed_precision",
action="store_true",
default=False,
help="Train with half-precision activations but fp32 params in D? "
"(default: %(default)s)",
)
parser.add_argument(
"--G_mixed_precision",
action="store_true",
default=False,
help="Train with half-precision activations but fp32 params in G? "
"(default: %(default)s)",
)
parser.add_argument(
"--accumulate_stats",
action="store_true",
default=False,
help='Accumulate "standing" batchnorm stats? (default: %(default)s)',
)
parser.add_argument(
"--num_standing_accumulations",
type=int,
default=16,
help="Number of forward passes to use in accumulating standing stats? "
"(default: %(default)s)",
)
### Bookkeping stuff ###
parser.add_argument(
"--slurm_logdir",
help="Where to save the logs from SLURM",
required=False,
default="biggan-training-runs",
metavar="DIR",
)
parser.add_argument(
"--G_eval_mode",
action="store_true",
default=False,
help="Run G in eval mode (running/standing stats?) at sample/test time? "
"(default: %(default)s)",
)
parser.add_argument(
"--save_every",
type=int,
default=2000,
help="Save every X iterations (default: %(default)s)",
)
parser.add_argument(
"--num_save_copies",
type=int,
default=2,
help="How many copies to save (default: %(default)s)",
)
parser.add_argument(
"--num_best_copies",
type=int,
default=2,
help="How many previous best checkpoints to save (default: %(default)s)",
)
parser.add_argument(
"--which_best",
type=str,
default="IS",
help='Which metric to use to determine when to save new "best"'
"checkpoints, one of IS or FID (default: %(default)s)",
)
parser.add_argument(
"--no_fid",
action="store_true",
default=False,
help="Calculate IS only, not FID? (default: %(default)s)",
)
parser.add_argument(
"--test_every",
type=int,
default=5000,
help="Test every X iterations (default: %(default)s)",
)
parser.add_argument(
"--num_inception_images",
type=int,
default=50000,
help="Number of samples to compute inception metrics with "
"(default: %(default)s)",
)
parser.add_argument(
"--hashname",
action="store_true",
default=False,
help="Use a hash of the experiment name instead of the full config "
"(default: %(default)s)",
)
parser.add_argument(
"--base_root",
type=str,
default="",
help="Default location to store all weights, samples, data, and logs "
" (default: %(default)s)",
)
parser.add_argument(
"--data_root",
type=str,
default="data",
help="Default location where data is stored (default: %(default)s)",
)
parser.add_argument(
"--weights_root",
type=str,
default="weights",
help="Default location to store weights (default: %(default)s)",
)
parser.add_argument(
"--logs_root",
type=str,
default="logs",
help="Default location to store logs (default: %(default)s)",
)
parser.add_argument(
"--samples_root",
type=str,
default="samples",
help="Default location to store samples (default: %(default)s)",
)
parser.add_argument(
"--pbar",
type=str,
default="mine",
help='Type of progressbar to use; one of "mine" or "tqdm" '
"(default: %(default)s)",
)
parser.add_argument(
"--name_suffix",
type=str,
default="",
help="Suffix for experiment name for loading weights for sampling "
'(consider "best0") (default: %(default)s)',
)
parser.add_argument(
"--experiment_name",
type=str,
default="",
help="Optionally override the automatic experiment naming with this arg. "
"(default: %(default)s)",
)
parser.add_argument(
"--config_from_name",
action="store_true",
default=False,
help="Use a hash of the experiment name instead of the full config "
"(default: %(default)s)",
)
### EMA Stuff ###
parser.add_argument(
"--ema",
action="store_true",
default=False,
help="Keep an ema of G" "s weights? (default: %(default)s)",
)
parser.add_argument(
"--ema_decay",
type=float,
default=0.9999,
help="EMA decay rate (default: %(default)s)",
)
parser.add_argument(
"--use_ema",
action="store_true",
default=False,
help="Use the EMA parameters of G for evaluation? (default: %(default)s)",
)
parser.add_argument(
"--ema_start",
type=int,
default=20000,
help="When to start updating the EMA weights (default: %(default)s)",
)
### Numerical precision and SV stuff ###
parser.add_argument(
"--adam_eps",
type=float,
default=1e-6,
help="epsilon value to use for Adam (default: %(default)s)",
)
parser.add_argument(
"--BN_eps",
type=float,
default=1e-5,
help="epsilon value to use for BatchNorm (default: %(default)s)",
)
parser.add_argument(
"--SN_eps",
type=float,
default=1e-6,
help="epsilon value to use for Spectral Norm(default: %(default)s)",
)
parser.add_argument(
"--num_G_SVs",
type=int,
default=1,
help="Number of SVs to track in G (default: %(default)s)",
)
parser.add_argument(
"--num_D_SVs",
type=int,
default=1,
help="Number of SVs to track in D (default: %(default)s)",
)
parser.add_argument(
"--num_G_SV_itrs",
type=int,
default=1,
help="Number of SV itrs in G (default: %(default)s)",
)
parser.add_argument(
"--num_D_SV_itrs",
type=int,
default=1,
help="Number of SV itrs in D (default: %(default)s)",
)
parser.add_argument(
"--class_cond",
action="store_true",
default=False,
help="Use classes as conditioning",
)
parser.add_argument(
"--constant_conditioning",
action="store_true",
default=False,
help="Use a a class-conditioning vector where the input label is always 0? (default: %(default)s)",
)
parser.add_argument(
"--which_dataset",
type=str,
default="imagenet",
# choices=['imagenet','coco', 'coco_40k'],
help="Dataset choice.",
)
### Ortho reg stuff ###
parser.add_argument(
"--G_ortho",
type=float,
default=0.0, # 1e-4 is default for BigGAN
help="Modified ortho reg coefficient in G(default: %(default)s)",
)
parser.add_argument(
"--D_ortho",
type=float,
default=0.0,
help="Modified ortho reg coefficient in D (default: %(default)s)",
)
parser.add_argument(
"--toggle_grads",
action="store_true",
default=True,
help="Toggle D and G"
's "requires_grad" settings when not training them? '
" (default: %(default)s)",
)
### Which train functions/setup ###
parser.add_argument(
"--partition",
help="Partition name for SLURM",
required=False,
default="learnlab",
)
parser.add_argument(
"--which_train_fn",
type=str,
default="GAN",
help="How2trainyourbois (default: %(default)s)",
)
parser.add_argument(
"--run_setup",
type=str,
default="slurm",
help="If local_debug or slurm (default: %(default)s)",
)
parser.add_argument(
"--ddp_train",
action="store_true",
default=False,
help="If use DDP for training",
)
parser.add_argument(
"--n_nodes",
type=int,
default=1,
help="Number of nodes for ddp (default: %(default)s)",
)
parser.add_argument(
"--n_gpus_per_node",
type=int,
default=1,
help="Number of gpus per node for ddp (default: %(default)s)",
)
parser.add_argument(
"--stop_when_diverge",
action="store_true",
default=False,
help="Stop the experiment if there is signs of divergence. "
"(default: %(default)s)",
)
parser.add_argument(
"--es_patience", type=int, default=50, help="Epochs for early stopping patience"
)
parser.add_argument(
"--deterministic_run",
action="store_true",
default=False,
help="Set deterministic cudnn and set the seed at each epoch"
"(default: %(default)s)",
)
### Testing parameters ###
parser.add_argument(
"--eval_prdc",
action="store_true",
default=False,
help="(Eval) Evaluate prdc " " (default: %(default)s)",
)
parser.add_argument(
"--eval_reference_set",
type=str,
default="train",
help="(Eval) Reference dataset to use for FID computation (default: %(default)s)",
)
### Resume training stuff
parser.add_argument(
"--load_weights",
type=str,
default="",
help="Suffix for which weights to load (e.g. best0, copy0) "
"(default: %(default)s)",
)
parser.add_argument(
"--resume",
action="store_true",
default=False,
help="Resume training? (default: %(default)s)",
)
### Log stuff ###
parser.add_argument(
"--logstyle",
type=str,
default="%3.3e",
help="What style to use when logging training metrics?"
"One of: %#.#f/ %#.#e (float/exp, text),"
"pickle (python pickle),"
"npz (numpy zip),"
"mat (MATLAB .mat file) (default: %(default)s)",
)
parser.add_argument(
"--log_G_spectra",
action="store_true",
default=False,
help="Log the top 3 singular values in each SN layer in G? "
"(default: %(default)s)",
)
parser.add_argument(
"--log_D_spectra",
action="store_true",
default=False,
help="Log the top 3 singular values in each SN layer in D? "
"(default: %(default)s)",
)
parser.add_argument(
"--sv_log_interval",
type=int,
default=10,
help="Iteration interval for logging singular values "
" (default: %(default)s)",
)
return parser
# Arguments for sample.py; not presently used in train.py
def add_sample_parser(parser):
parser.add_argument(
"--sample_npz",
action="store_true",
default=False,
help='Sample "sample_num_npz" images and save to npz? '
"(default: %(default)s)",
)
parser.add_argument(
"--sample_num_npz",
type=int,
default=50000,
help="Number of images to sample when sampling NPZs " "(default: %(default)s)",
)
parser.add_argument(
"--sample_sheets",
action="store_true",
default=False,
help="Produce class-conditional sample sheets and stick them in "
"the samples root? (default: %(default)s)",
)
parser.add_argument(
"--sample_interps",
action="store_true",
default=False,
help="Produce interpolation sheets and stick them in "
"the samples root? (default: %(default)s)",
)
parser.add_argument(
"--sample_sheet_folder_num",
type=int,
default=-1,
help="Number to use for the folder for these sample sheets "
"(default: %(default)s)",
)
parser.add_argument(
"--sample_random",
action="store_true",
default=False,
help="Produce a single random sheet? (default: %(default)s)",
)
parser.add_argument(
"--sample_trunc_curves",
type=str,
default="",
help="Get inception metrics with a range of variances?"
"To use this, specify a startpoint, step, and endpoint, e.g. "
"--sample_trunc_curves 0.2_0.1_1.0 for a startpoint of 0.2, "
"endpoint of 1.0, and stepsize of 1.0. Note that this is "
"not exactly identical to using tf.truncated_normal, but should "
"have approximately the same effect. (default: %(default)s)",
)
parser.add_argument(
"--sample_inception_metrics",
action="store_true",
default=False,
help="Calculate Inception metrics with sample.py? (default: %(default)s)",
)
return parser
activation_dict = {
"inplace_relu": nn.ReLU(inplace=True),
"relu": nn.ReLU(inplace=False),
"ir": nn.ReLU(inplace=True),
}
class CenterCropLongEdge(object):
"""Crops the given PIL Image on the long edge.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
return transforms.functional.center_crop(img, min(img.size))
def __repr__(self):
return self.__class__.__name__
class RandomCropLongEdge(object):
"""Crops the given PIL Image on the long edge with a random start point.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
"""
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped.
Returns:
PIL Image: Cropped image.
"""
size = (min(img.size), min(img.size))
# Only step forward along this edge if it's the long edge
i = (
0
if size[0] == img.size[0]
else np.random.randint(low=0, high=img.size[0] - size[0])
)
j = (
0
if size[1] == img.size[1]
else np.random.randint(low=0, high=img.size[1] - size[1])
)
return transforms.functional.crop(img, i, j, size[0], size[1])
def __repr__(self):
return self.__class__.__name__
# Utility file to seed rngs
def seed_rng(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
def seed_worker(worker_id):
worker_seed = torch.initial_seed() + worker_id
# Utility to peg all roots to a base root
# If a base root folder is provided, peg all other root folders to it.
def update_config_roots(config, change_weight_folder=True):
if config["base_root"]:
print("Pegging all root folders to base root %s" % config["base_root"])
for key in ["weights", "logs", "samples"]:
if change_weight_folder:
config["%s_root" % key] = "%s/%s" % (config["base_root"], key)
else:
config["%s_root" % key] = "%s" % (config["base_root"])
return config
# Utility to prepare root folders if they don't exist; parent folder must exist
def prepare_root(config):
for key in ["weights_root", "logs_root", "samples_root"]:
if not os.path.exists(config[key]):
print("Making directory %s for %s..." % (config[key], key))
os.mkdir(config[key])
# Simple wrapper that applies EMA to a model. COuld be better done in 1.0 using
# the parameters() and buffers() module functions, but for now this works
# with state_dicts using .copy_
class ema(object):
def __init__(self, source, target, decay=0.9999, start_itr=0):
self.source = source
self.target = target
self.decay = decay
# Optional parameter indicating what iteration to start the decay at
self.start_itr = start_itr
# Initialize target's params to be source's
self.source_dict = self.source.state_dict()
self.target_dict = self.target.state_dict()
print("Initializing EMA parameters to be source parameters...")
with torch.no_grad():
for key in self.source_dict:
self.target_dict[key].data.copy_(self.source_dict[key].data)
# target_dict[key].data = source_dict[key].data # Doesn't work!
def update(self, itr=None):
# If an iteration counter is provided and itr is less than the start itr,
# peg the ema weights to the underlying weights.
if itr and itr < self.start_itr:
decay = 0.0
else:
decay = self.decay
with torch.no_grad():
for key in self.source_dict:
self.target_dict[key].data.copy_(
self.target_dict[key].data * decay
+ self.source_dict[key].data * (1 - decay)
)
# Apply modified ortho reg to a model
# This function is an optimized version that directly computes the gradient,
# instead of computing and then differentiating the loss.
def ortho(model, strength=1e-4, blacklist=[]):
with torch.no_grad():
for param in model.parameters():
# Only apply this to parameters with at least 2 axes, and not in the blacklist
if len(param.shape) < 2 or any([param is item for item in blacklist]):
continue
w = param.view(param.shape[0], -1)
grad = 2 * torch.mm(
torch.mm(w, w.t()) * (1.0 - torch.eye(w.shape[0], device=w.device)), w
)
param.grad.data += strength * grad.view(param.shape)
# Default ortho reg
# This function is an optimized version that directly computes the gradient,
# instead of computing and then differentiating the loss.
def default_ortho(model, strength=1e-4, blacklist=[]):
with torch.no_grad():
for param in model.parameters():
# Only apply this to parameters with at least 2 axes & not in blacklist
if len(param.shape) < 2 or param in blacklist:
continue
w = param.view(param.shape[0], -1)
grad = 2 * torch.mm(
torch.mm(w, w.t()) - torch.eye(w.shape[0], device=w.device), w
)
param.grad.data += strength * grad.view(param.shape)
# Convenience utility to switch off requires_grad
def toggle_grad(model, on_or_off):
for param in model.parameters():
param.requires_grad = on_or_off
# Function to join strings or ignore them
# Base string is the string to link "strings," while strings
# is a list of strings or Nones.
def join_strings(base_string, strings):
return base_string.join([item for item in strings if item])
# Save a model's weights, optimizer, and the state_dict
def save_weights(
G,
D,
state_dict,
weights_root,
experiment_name,
name_suffix=None,
G_ema=None,
embedded_optimizers=True,
G_optim=None,
D_optim=None,
):
root = "/".join([weights_root, experiment_name])
if not os.path.exists(root):
os.mkdir(root)
if name_suffix:
print("Saving weights to %s/%s..." % (root, name_suffix))
else:
print("Saving weights to %s..." % root)
torch.save(
G.state_dict(), "%s/%s.pth" % (root, join_strings("_", ["G", name_suffix]))
)
torch.save(
D.state_dict(), "%s/%s.pth" % (root, join_strings("_", ["D", name_suffix]))
)
torch.save(
state_dict, "%s/%s.pth" % (root, join_strings("_", ["state_dict", name_suffix]))
)
if embedded_optimizers:
torch.save(
G.optim.state_dict(),
"%s/%s.pth" % (root, join_strings("_", ["G_optim", name_suffix])),
)
torch.save(
D.optim.state_dict(),
"%s/%s.pth" % (root, join_strings("_", ["D_optim", name_suffix])),
)
else:
torch.save(
G_optim.state_dict(),
"%s/%s.pth" % (root, join_strings("_", ["G_optim", name_suffix])),
)
torch.save(
D_optim.state_dict(),
"%s/%s.pth" % (root, join_strings("_", ["D_optim", name_suffix])),
)
if G_ema is not None:
torch.save(
G_ema.state_dict(),
"%s/%s.pth" % (root, join_strings("_", ["G_ema", name_suffix])),
)
# Load a model's weights, optimizer, and the state_dict
def load_weights(
G,
D,
state_dict,
weights_root,
experiment_name,
name_suffix=None,
G_ema=None,
strict=True,
load_optim=True,
eval=False,
map_location=None,
embedded_optimizers=True,
G_optim=None,
D_optim=None,
):
root = "/".join([weights_root, experiment_name])
if not os.path.exists(root):
print("Not loading data, experiment folder does not exist yet!")
print(root)
if eval:
raise ValueError("Make sure foder exists")
return
if name_suffix:
print("Loading %s weights from %s..." % (name_suffix, root))
else:
print("Loading weights from %s..." % root)
if G is not None:
G.load_state_dict(
torch.load(
"%s/%s.pth" % (root, join_strings("_", ["G", name_suffix])),
map_location=map_location,
),
strict=strict,
)
if load_optim:
if embedded_optimizers:
G.optim.load_state_dict(
torch.load(
"%s/%s.pth"
% (root, join_strings("_", ["G_optim", name_suffix])),
map_location=map_location,
)
)
else:
G_optim.load_state_dict(
torch.load(
"%s/%s.pth"
% (root, join_strings("_", ["G_optim", name_suffix])),
map_location=map_location,
)
)
if D is not None:
D.load_state_dict(
torch.load(
"%s/%s.pth" % (root, join_strings("_", ["D", name_suffix])),
map_location=map_location,
),
strict=strict,
)
if load_optim:
if embedded_optimizers:
D.optim.load_state_dict(
torch.load(
"%s/%s.pth"
% (root, join_strings("_", ["D_optim", name_suffix])),
map_location=map_location,
)
)
else:
D_optim.load_state_dict(
torch.load(
"%s/%s.pth"
% (root, join_strings("_", ["D_optim", name_suffix])),
map_location=map_location,
)
)
# Load state dict
for item in state_dict:
try:
state_dict[item] = torch.load(
"%s/%s.pth" % (root, join_strings("_", ["state_dict", name_suffix])),
map_location=map_location,
)[item]
except:
print("No values to load")
if G_ema is not None:
G_ema.load_state_dict(
torch.load(
"%s/%s.pth" % (root, join_strings("_", ["G_ema", name_suffix])),
map_location=map_location,
),
strict=strict,
)
""" MetricsLogger originally stolen from VoxNet source code.
Used for logging inception metrics"""
class MetricsLogger(object):
def __init__(self, fname, reinitialize=False):
self.fname = fname
self.reinitialize = reinitialize
if os.path.exists(self.fname):
if self.reinitialize:
print("{} exists, deleting...".format(self.fname))
os.remove(self.fname)
def log(self, record=None, **kwargs):
"""
Assumption: no newlines in the input.
"""
if record is None:
record = {}
record.update(kwargs)
record["_stamp"] = time.time()
with open(self.fname, "a") as f:
f.write(json.dumps(record, ensure_ascii=True) + "\n")
# Logstyle is either:
# '%#.#f' for floating point representation in text
# '%#.#e' for exponent representation in text
# 'npz' for output to npz # NOT YET SUPPORTED
# 'pickle' for output to a python pickle # NOT YET SUPPORTED
# 'mat' for output to a MATLAB .mat file # NOT YET SUPPORTED
class MyLogger(object):
def __init__(self, fname, reinitialize=False, logstyle="%3.3f"):
self.root = fname
if not os.path.exists(self.root):
os.mkdir(self.root)
self.reinitialize = reinitialize
self.metrics = []
self.logstyle = logstyle # One of '%3.3f' or like '%3.3e'
# Delete log if re-starting and log already exists
def reinit(self, item):
if os.path.exists("%s/%s.log" % (self.root, item)):
if self.reinitialize:
# Only print the removal mess
if "sv" in item:
if not any("sv" in item for item in self.metrics):
print("Deleting singular value logs...")
else:
print(
"{} exists, deleting...".format("%s_%s.log" % (self.root, item))
)
os.remove("%s/%s.log" % (self.root, item))
# Log in plaintext; this is designed for being read in MATLAB(sorry not sorry)
def log(self, itr, **kwargs):
for arg in kwargs:
if arg not in self.metrics:
if self.reinitialize:
self.reinit(arg)
self.metrics += [arg]
if self.logstyle == "pickle":
print("Pickle not currently supported...")
# with open('%s/%s.log' % (self.root, arg), 'a') as f:
# pickle.dump(kwargs[arg], f)
elif self.logstyle == "mat":
print(".mat logstyle not currently supported...")
else:
with open("%s/%s.log" % (self.root, arg), "a") as f:
f.write("%d: %s\n" % (itr, self.logstyle % kwargs[arg]))
# Write some metadata to the logs directory
def write_metadata(logs_root, experiment_name, config, state_dict):
with open(("%s/%s/metalog.txt" % (logs_root, experiment_name)), "w") as writefile:
writefile.write("datetime: %s\n" % str(datetime.datetime.now()))
writefile.write("config: %s\n" % str(config))
writefile.write("state: %s\n" % str(state_dict))
"""
Very basic progress indicator to wrap an iterable in.
Author: Jan Schlüter
Andy's adds: time elapsed in addition to ETA, makes it possible to add
estimated time to 1k iters instead of estimated time to completion.
"""
def progress(items, desc="", total=None, min_delay=0.1, displaytype="s1k"):
"""
Returns a generator over `items`, printing the number and percentage of
items processed and the estimated remaining processing time before yielding
the next item. `total` gives the total number of items (required if `items`
has no length), and `min_delay` gives the minimum time in seconds between
subsequent prints. `desc` gives an optional prefix text (end with a space).
"""
total = total or len(items)
t_start = time.time()
t_last = 0
for n, item in enumerate(items):
t_now = time.time()
if t_now - t_last > min_delay:
print(
"\r%s%d/%d (%6.2f%%)" % (desc, n + 1, total, n / float(total) * 100),
end=" ",
)
if n > 0:
if displaytype == "s1k": # minutes/seconds for 1000 iters
next_1000 = n + (1000 - n % 1000)
t_done = t_now - t_start
t_1k = t_done / n * next_1000
outlist = list(divmod(t_done, 60)) + list(divmod(t_1k - t_done, 60))
print("(TE/ET1k: %d:%02d / %d:%02d)" % tuple(outlist), end=" ")
else: # displaytype == 'eta':
t_done = t_now - t_start
t_total = t_done / n * total
outlist = list(divmod(t_done, 60)) + list(
divmod(t_total - t_done, 60)
)
print("(TE/ETA: %d:%02d / %d:%02d)" % tuple(outlist), end=" ")
sys.stdout.flush()
t_last = t_now
yield item
t_total = time.time() - t_start
print(
"\r%s%d/%d (100.00%%) (took %d:%02d)"
% ((desc, total, total) + divmod(t_total, 60))
)
# Sample function for use with inception metrics
def sample(
G,
sample_conditioning_func,
config,
class_cond=True,
instance_cond=False,
device="cuda",
):
conditioning = sample_conditioning_func()
with torch.no_grad():
if class_cond and not instance_cond:
z_, y_ = conditioning
y_ = y_.long()
y_ = y_.to(device, non_blocking=True)
feats_ = None
elif instance_cond and not class_cond:
z_, feats_ = conditioning
feats_ = feats_.to(device, non_blocking=True)
y_ = None
elif instance_cond and class_cond:
z_, y_, feats_ = conditioning
y_, feats_ = (
y_.to(device, non_blocking=True),
feats_.to(device, non_blocking=True),
)
z_ = z_.to(device, non_blocking=True)
if config["parallel"]:
G_z = nn.parallel.data_parallel(G, (z_, y_, feats_))
else:
G_z = G(z_, y_, feats_)
return G_z, y_, feats_
# Sample function for sample sheets
def sample_sheet(
G,
classes_per_sheet,
num_classes,
samples_per_class,
parallel,
samples_root,
experiment_name,
folder_number,
z_=None,
):
# Prepare sample directory
if not os.path.isdir("%s/%s" % (samples_root, experiment_name)):
os.mkdir("%s/%s" % (samples_root, experiment_name))
if not os.path.isdir("%s/%s/%d" % (samples_root, experiment_name, folder_number)):
os.mkdir("%s/%s/%d" % (samples_root, experiment_name, folder_number))
# loop over total number of sheets
for i in range(num_classes // classes_per_sheet):
ims = []
y = torch.arange(
i * classes_per_sheet, (i + 1) * classes_per_sheet, device="cuda"
)
for j in range(samples_per_class):
if (
(z_ is not None)
and hasattr(z_, "sample_")
and classes_per_sheet <= z_.size(0)
):
z_.sample_()
else:
z_ = torch.randn(classes_per_sheet, G.dim_z, device="cuda")
with torch.no_grad():
if parallel:
o = nn.parallel.data_parallel(
G, (z_[:classes_per_sheet], G.shared(y))
)
else:
o = G(z_[:classes_per_sheet], G.shared(y))
ims += [o.data.cpu()]
# This line should properly unroll the images
out_ims = (
torch.stack(ims, 1)
.view(-1, ims[0].shape[1], ims[0].shape[2], ims[0].shape[3])
.data.float()
.cpu()
)
# The path for the samples
image_filename = "%s/%s/%d/samples%d.jpg" % (
samples_root,
experiment_name,
folder_number,
i,
)
torchvision.utils.save_image(
out_ims, image_filename, nrow=samples_per_class, normalize=True
)
# Interp function; expects x0 and x1 to be of shape (shape0, 1, rest_of_shape..)
def interp(x0, x1, num_midpoints):
lerp = torch.linspace(0, 1.0, num_midpoints + 2, device="cuda").to(x0.dtype)
return (x0 * (1 - lerp.view(1, -1, 1))) + (x1 * lerp.view(1, -1, 1))
# interp sheet function
# Supports full, class-wise and intra-class interpolation
def interp_sheet(
G,
num_per_sheet,
num_midpoints,
num_classes,
parallel,
samples_root,
experiment_name,
folder_number,
sheet_number=0,
fix_z=False,
fix_y=False,
device="cuda",
):
# Prepare zs and ys
if fix_z: # If fix Z, only sample 1 z per row
zs = torch.randn(num_per_sheet, 1, G.dim_z, device=device)
zs = zs.repeat(1, num_midpoints + 2, 1).view(-1, G.dim_z)
else:
zs = interp(
torch.randn(num_per_sheet, 1, G.dim_z, device=device),
torch.randn(num_per_sheet, 1, G.dim_z, device=device),
num_midpoints,
).view(-1, G.dim_z)
if fix_y: # If fix y, only sample 1 z per row
ys = sample_1hot(num_per_sheet, num_classes)
ys = G.shared(ys).view(num_per_sheet, 1, -1)
ys = ys.repeat(1, num_midpoints + 2, 1).view(
num_per_sheet * (num_midpoints + 2), -1
)
else:
ys = interp(
G.shared(sample_1hot(num_per_sheet, num_classes)).view(
num_per_sheet, 1, -1
),
G.shared(sample_1hot(num_per_sheet, num_classes)).view(
num_per_sheet, 1, -1
),
num_midpoints,
).view(num_per_sheet * (num_midpoints + 2), -1)
# Run the net--note that we've already passed y through G.shared.
if G.fp16:
zs = zs.half()
with torch.no_grad():
if parallel:
out_ims = nn.parallel.data_parallel(G, (zs, ys)).data.cpu()
else:
out_ims = G(zs, ys).data.cpu()
interp_style = "" + ("Z" if not fix_z else "") + ("Y" if not fix_y else "")
image_filename = "%s/%s/%d/interp%s%d.jpg" % (
samples_root,
experiment_name,
folder_number,
interp_style,
sheet_number,
)
torchvision.utils.save_image(
out_ims, image_filename, nrow=num_midpoints + 2, normalize=True
)
# Convenience debugging function to print out gradnorms and shape from each layer
# May need to rewrite this so we can actually see which parameter is which
def print_grad_norms(net):
gradsums = [
[
float(torch.norm(param.grad).item()),
float(torch.norm(param).item()),
param.shape,
]
for param in net.parameters()
]
order = np.argsort([item[0] for item in gradsums])
print(
[
"%3.3e,%3.3e, %s"
% (
gradsums[item_index][0],
gradsums[item_index][1],
str(gradsums[item_index][2]),
)
for item_index in order
]
)
# Get singular values to log. This will use the state dict to find them
# and substitute underscores for dots.
def get_SVs(net, prefix):
d = net.state_dict()
return {
("%s_%s" % (prefix, key)).replace(".", "_"): float(d[key].item())
for key in d
if "sv" in key
}
# Name an experiment based on its config
def name_from_config(config):
name = "_".join(
[
item
for item in [
"Big%s" % config["which_train_fn"],
config["dataset"],
config["model"] if config["model"] != "BigGAN" else None,
"seed%d" % config["seed"],
"Gch%d" % config["G_ch"],
"Dch%d" % config["D_ch"],
"Gd%d" % config["G_depth"] if config["G_depth"] > 1 else None,
"Dd%d" % config["D_depth"] if config["D_depth"] > 1 else None,
"bs%d" % config["batch_size"],
"Gfp16" if config["G_fp16"] else None,
"Dfp16" if config["D_fp16"] else None,
"nDs%d" % config["num_D_steps"] if config["num_D_steps"] > 1 else None,
"nDa%d" % config["num_D_accumulations"]
if config["num_D_accumulations"] > 1
else None,
"nGa%d" % config["num_G_accumulations"]
if config["num_G_accumulations"] > 1
else None,
"Glr%2.1e" % config["G_lr"],
"Dlr%2.1e" % config["D_lr"],
"GB%3.3f" % config["G_B1"] if config["G_B1"] != 0.0 else None,
"GBB%3.3f" % config["G_B2"] if config["G_B2"] != 0.999 else None,
"DB%3.3f" % config["D_B1"] if config["D_B1"] != 0.0 else None,
"DBB%3.3f" % config["D_B2"] if config["D_B2"] != 0.999 else None,
"Gnl%s" % config["G_nl"],
"Dnl%s" % config["D_nl"],
"Ginit%s" % config["G_init"],
"Dinit%s" % config["D_init"],
"G%s" % config["G_param"] if config["G_param"] != "SN" else None,
"D%s" % config["D_param"] if config["D_param"] != "SN" else None,
"Gattn%s" % config["G_attn"] if config["G_attn"] != "0" else None,
"Dattn%s" % config["D_attn"] if config["D_attn"] != "0" else None,
"Gortho%2.1e" % config["G_ortho"] if config["G_ortho"] > 0.0 else None,
"Dortho%2.1e" % config["D_ortho"] if config["D_ortho"] > 0.0 else None,
config["norm_style"] if config["norm_style"] != "bn" else None,
"cr" if config["cross_replica"] else None,
"Gshared" if config["G_shared"] else None,
"hier" if config["hier"] else None,
"ema" if config["ema"] else None,
config["name_suffix"] if config["name_suffix"] else None,
]
if item is not None
]
)
# Get GPU memory, -i is the index
def query_gpu(indices):
os.system("nvidia-smi -i 0 --query-gpu=memory.free --format=csv")
# Convenience function to count the number of parameters in a module
def count_parameters(module):
print(
"Number of parameters: {}".format(
sum([p.data.nelement() for p in module.parameters()])
)
)
# Convenience function to sample an index, not actually a 1-hot
def sample_1hot(batch_size, num_classes, device="cuda"):
return torch.randint(
low=0,
high=num_classes,
size=(batch_size,),
device=device,
dtype=torch.int64,
requires_grad=False,
)
def initiate_standing_stats(net):
for module in net.modules():
if hasattr(module, "accumulate_standing"):
module.reset_stats()
module.accumulate_standing = True
def accumulate_standing_stats(net, z, y, nclasses, num_accumulations=16):
initiate_standing_stats(net)
net.train()
for i in range(num_accumulations):
with torch.no_grad():
z.normal_()
y.random_(0, nclasses)
x = net(z, net.shared(y)) # No need to parallelize here unless using syncbn
# Set to eval mode
net.eval()
# This version of Adam keeps an fp32 copy of the parameters and
# does all of the parameter updates in fp32, while still doing the
# forwards and backwards passes using fp16 (i.e. fp16 copies of the
# parameters and fp16 activations).
#
# Note that this calls .float().cuda() on the params.
import math
from torch.optim.optimizer import Optimizer
class Adam16(Optimizer):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
params = list(params)
super(Adam16, self).__init__(params, defaults)
# Safety modification to make sure we floatify our state
def load_state_dict(self, state_dict):
super(Adam16, self).load_state_dict(state_dict)
for group in self.param_groups:
for p in group["params"]:
self.state[p]["exp_avg"] = self.state[p]["exp_avg"].float()
self.state[p]["exp_avg_sq"] = self.state[p]["exp_avg_sq"].float()
self.state[p]["fp32_p"] = self.state[p]["fp32_p"].float()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = grad.new().resize_as_(grad).zero_()
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = grad.new().resize_as_(grad).zero_()
# Fp32 copy of the weights
state["fp32_p"] = p.data.float()
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
if group["weight_decay"] != 0:
grad = grad.add(group["weight_decay"], state["fp32_p"])
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group["eps"])
bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
state["fp32_p"].addcdiv_(-step_size, exp_avg, denom)
p.data = state["fp32_p"].half()
return loss