ccsasuke's picture
Update README.md
3ff012a
|
raw
history blame
45.3 kB
metadata
tags:
  - feature-extraction
  - mteb
pipeline_tag: feature-extraction
model-index:
  - name: dragon-plus
    results:
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.973
          - type: map_at_10
            value: 38.242
          - type: map_at_100
            value: 39.326
          - type: map_at_1000
            value: 39.342
          - type: map_at_3
            value: 33.144
          - type: map_at_5
            value: 35.818
          - type: mrr_at_1
            value: 23.115
          - type: mrr_at_10
            value: 38.31
          - type: mrr_at_100
            value: 39.387
          - type: mrr_at_1000
            value: 39.403
          - type: mrr_at_3
            value: 33.167
          - type: mrr_at_5
            value: 35.856
          - type: ndcg_at_1
            value: 22.973
          - type: ndcg_at_10
            value: 47.251
          - type: ndcg_at_100
            value: 51.937
          - type: ndcg_at_1000
            value: 52.288000000000004
          - type: ndcg_at_3
            value: 36.569
          - type: ndcg_at_5
            value: 41.396
          - type: precision_at_1
            value: 22.973
          - type: precision_at_10
            value: 7.632
          - type: precision_at_100
            value: 0.9690000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 15.504999999999999
          - type: precision_at_5
            value: 11.65
          - type: recall_at_1
            value: 22.973
          - type: recall_at_10
            value: 76.31599999999999
          - type: recall_at_100
            value: 96.942
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 46.515
          - type: recall_at_5
            value: 58.25
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.793000000000003
          - type: map_at_10
            value: 38.686
          - type: map_at_100
            value: 39.848
          - type: map_at_1000
            value: 39.989999999999995
          - type: map_at_3
            value: 35.437000000000005
          - type: map_at_5
            value: 37.067
          - type: mrr_at_1
            value: 35.05
          - type: mrr_at_10
            value: 43.903999999999996
          - type: mrr_at_100
            value: 44.612
          - type: mrr_at_1000
            value: 44.669
          - type: mrr_at_3
            value: 41.321000000000005
          - type: mrr_at_5
            value: 42.573
          - type: ndcg_at_1
            value: 35.05
          - type: ndcg_at_10
            value: 44.564
          - type: ndcg_at_100
            value: 49.252
          - type: ndcg_at_1000
            value: 51.791
          - type: ndcg_at_3
            value: 39.576
          - type: ndcg_at_5
            value: 41.426
          - type: precision_at_1
            value: 35.05
          - type: precision_at_10
            value: 8.455
          - type: precision_at_100
            value: 1.3299999999999998
          - type: precision_at_1000
            value: 0.187
          - type: precision_at_3
            value: 18.645999999999997
          - type: precision_at_5
            value: 13.247
          - type: recall_at_1
            value: 28.793000000000003
          - type: recall_at_10
            value: 56.351
          - type: recall_at_100
            value: 76.542
          - type: recall_at_1000
            value: 93.14099999999999
          - type: recall_at_3
            value: 41.581
          - type: recall_at_5
            value: 47.066
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.828
          - type: map_at_10
            value: 39.312999999999995
          - type: map_at_100
            value: 40.487
          - type: map_at_1000
            value: 40.607
          - type: map_at_3
            value: 36.525
          - type: map_at_5
            value: 38.121
          - type: mrr_at_1
            value: 37.197
          - type: mrr_at_10
            value: 45.091
          - type: mrr_at_100
            value: 45.726
          - type: mrr_at_1000
            value: 45.769999999999996
          - type: mrr_at_3
            value: 42.856
          - type: mrr_at_5
            value: 44.056
          - type: ndcg_at_1
            value: 37.197
          - type: ndcg_at_10
            value: 44.737
          - type: ndcg_at_100
            value: 49.02
          - type: ndcg_at_1000
            value: 51.052
          - type: ndcg_at_3
            value: 40.685
          - type: ndcg_at_5
            value: 42.519
          - type: precision_at_1
            value: 37.197
          - type: precision_at_10
            value: 8.363
          - type: precision_at_100
            value: 1.329
          - type: precision_at_1000
            value: 0.179
          - type: precision_at_3
            value: 19.533
          - type: precision_at_5
            value: 13.732
          - type: recall_at_1
            value: 29.828
          - type: recall_at_10
            value: 54.339000000000006
          - type: recall_at_100
            value: 72.217
          - type: recall_at_1000
            value: 85.185
          - type: recall_at_3
            value: 42.331
          - type: recall_at_5
            value: 47.612
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 37.919000000000004
          - type: map_at_10
            value: 49.225
          - type: map_at_100
            value: 50.306
          - type: map_at_1000
            value: 50.364
          - type: map_at_3
            value: 46.459
          - type: map_at_5
            value: 48.173
          - type: mrr_at_1
            value: 43.072
          - type: mrr_at_10
            value: 52.437
          - type: mrr_at_100
            value: 53.2
          - type: mrr_at_1000
            value: 53.233
          - type: mrr_at_3
            value: 50.219
          - type: mrr_at_5
            value: 51.629999999999995
          - type: ndcg_at_1
            value: 43.072
          - type: ndcg_at_10
            value: 54.468
          - type: ndcg_at_100
            value: 58.912
          - type: ndcg_at_1000
            value: 60.179
          - type: ndcg_at_3
            value: 49.836999999999996
          - type: ndcg_at_5
            value: 52.371
          - type: precision_at_1
            value: 43.072
          - type: precision_at_10
            value: 8.52
          - type: precision_at_100
            value: 1.168
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 21.923000000000002
          - type: precision_at_5
            value: 14.997
          - type: recall_at_1
            value: 37.919000000000004
          - type: recall_at_10
            value: 66.682
          - type: recall_at_100
            value: 85.81
          - type: recall_at_1000
            value: 94.812
          - type: recall_at_3
            value: 54.515
          - type: recall_at_5
            value: 60.684000000000005
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.04
          - type: map_at_10
            value: 27.665
          - type: map_at_100
            value: 28.716
          - type: map_at_1000
            value: 28.794999999999998
          - type: map_at_3
            value: 25.338
          - type: map_at_5
            value: 26.815
          - type: mrr_at_1
            value: 22.712
          - type: mrr_at_10
            value: 29.447000000000003
          - type: mrr_at_100
            value: 30.457
          - type: mrr_at_1000
            value: 30.522
          - type: mrr_at_3
            value: 27.119
          - type: mrr_at_5
            value: 28.582
          - type: ndcg_at_1
            value: 22.712
          - type: ndcg_at_10
            value: 31.77
          - type: ndcg_at_100
            value: 37.104
          - type: ndcg_at_1000
            value: 39.371
          - type: ndcg_at_3
            value: 27.171
          - type: ndcg_at_5
            value: 29.698999999999998
          - type: precision_at_1
            value: 22.712
          - type: precision_at_10
            value: 4.859
          - type: precision_at_100
            value: 0.7929999999999999
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 11.299
          - type: precision_at_5
            value: 8.203000000000001
          - type: recall_at_1
            value: 21.04
          - type: recall_at_10
            value: 42.848000000000006
          - type: recall_at_100
            value: 67.694
          - type: recall_at_1000
            value: 85.179
          - type: recall_at_3
            value: 30.54
          - type: recall_at_5
            value: 36.555
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 13.403
          - type: map_at_10
            value: 19.663
          - type: map_at_100
            value: 20.799
          - type: map_at_1000
            value: 20.915
          - type: map_at_3
            value: 17.465
          - type: map_at_5
            value: 18.665000000000003
          - type: mrr_at_1
            value: 16.418
          - type: mrr_at_10
            value: 23.394000000000002
          - type: mrr_at_100
            value: 24.363
          - type: mrr_at_1000
            value: 24.44
          - type: mrr_at_3
            value: 20.916
          - type: mrr_at_5
            value: 22.241
          - type: ndcg_at_1
            value: 16.418
          - type: ndcg_at_10
            value: 24.013
          - type: ndcg_at_100
            value: 29.62
          - type: ndcg_at_1000
            value: 32.518
          - type: ndcg_at_3
            value: 19.747
          - type: ndcg_at_5
            value: 21.689
          - type: precision_at_1
            value: 16.418
          - type: precision_at_10
            value: 4.515000000000001
          - type: precision_at_100
            value: 0.8410000000000001
          - type: precision_at_1000
            value: 0.123
          - type: precision_at_3
            value: 9.411
          - type: precision_at_5
            value: 6.965000000000001
          - type: recall_at_1
            value: 13.403
          - type: recall_at_10
            value: 33.731
          - type: recall_at_100
            value: 58.743
          - type: recall_at_1000
            value: 79.343
          - type: recall_at_3
            value: 22.148
          - type: recall_at_5
            value: 26.998
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.782
          - type: map_at_10
            value: 34.891
          - type: map_at_100
            value: 36.186
          - type: map_at_1000
            value: 36.303999999999995
          - type: map_at_3
            value: 32.099
          - type: map_at_5
            value: 33.777
          - type: mrr_at_1
            value: 30.895
          - type: mrr_at_10
            value: 40.049
          - type: mrr_at_100
            value: 40.953
          - type: mrr_at_1000
            value: 41
          - type: mrr_at_3
            value: 37.424
          - type: mrr_at_5
            value: 39.07
          - type: ndcg_at_1
            value: 30.895
          - type: ndcg_at_10
            value: 40.436
          - type: ndcg_at_100
            value: 46.046
          - type: ndcg_at_1000
            value: 48.324
          - type: ndcg_at_3
            value: 35.66
          - type: ndcg_at_5
            value: 38.167
          - type: precision_at_1
            value: 30.895
          - type: precision_at_10
            value: 7.151000000000001
          - type: precision_at_100
            value: 1.171
          - type: precision_at_1000
            value: 0.155
          - type: precision_at_3
            value: 16.619
          - type: precision_at_5
            value: 11.935
          - type: recall_at_1
            value: 25.782
          - type: recall_at_10
            value: 52.013
          - type: recall_at_100
            value: 75.736
          - type: recall_at_1000
            value: 90.823
          - type: recall_at_3
            value: 38.763
          - type: recall_at_5
            value: 45.023
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.491
          - type: map_at_10
            value: 30.434
          - type: map_at_100
            value: 31.611
          - type: map_at_1000
            value: 31.732
          - type: map_at_3
            value: 27.776
          - type: map_at_5
            value: 29.271
          - type: mrr_at_1
            value: 27.74
          - type: mrr_at_10
            value: 34.964
          - type: mrr_at_100
            value: 35.943000000000005
          - type: mrr_at_1000
            value: 36.012
          - type: mrr_at_3
            value: 32.667
          - type: mrr_at_5
            value: 33.975
          - type: ndcg_at_1
            value: 27.74
          - type: ndcg_at_10
            value: 35.32
          - type: ndcg_at_100
            value: 40.812
          - type: ndcg_at_1000
            value: 43.49
          - type: ndcg_at_3
            value: 30.843999999999998
          - type: ndcg_at_5
            value: 32.838
          - type: precision_at_1
            value: 27.74
          - type: precision_at_10
            value: 6.358
          - type: precision_at_100
            value: 1.078
          - type: precision_at_1000
            value: 0.147
          - type: precision_at_3
            value: 14.421999999999999
          - type: precision_at_5
            value: 10.32
          - type: recall_at_1
            value: 22.491
          - type: recall_at_10
            value: 45.659
          - type: recall_at_100
            value: 69.303
          - type: recall_at_1000
            value: 87.849
          - type: recall_at_3
            value: 33.155
          - type: recall_at_5
            value: 38.369
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.955500000000008
          - type: map_at_10
            value: 30.754000000000005
          - type: map_at_100
            value: 31.85208333333333
          - type: map_at_1000
            value: 31.968416666666666
          - type: map_at_3
            value: 28.35166666666667
          - type: map_at_5
            value: 29.717333333333336
          - type: mrr_at_1
            value: 27.0815
          - type: mrr_at_10
            value: 34.50116666666666
          - type: mrr_at_100
            value: 35.361583333333336
          - type: mrr_at_1000
            value: 35.42583333333334
          - type: mrr_at_3
            value: 32.30499999999999
          - type: mrr_at_5
            value: 33.56175
          - type: ndcg_at_1
            value: 27.0815
          - type: ndcg_at_10
            value: 35.40033333333333
          - type: ndcg_at_100
            value: 40.3485
          - type: ndcg_at_1000
            value: 42.86816666666667
          - type: ndcg_at_3
            value: 31.24325
          - type: ndcg_at_5
            value: 33.21525
          - type: precision_at_1
            value: 27.0815
          - type: precision_at_10
            value: 6.118666666666667
          - type: precision_at_100
            value: 1.0085833333333334
          - type: precision_at_1000
            value: 0.14150000000000001
          - type: precision_at_3
            value: 14.19175
          - type: precision_at_5
            value: 10.064583333333331
          - type: recall_at_1
            value: 22.955500000000008
          - type: recall_at_10
            value: 45.51058333333333
          - type: recall_at_100
            value: 67.49925
          - type: recall_at_1000
            value: 85.24766666666666
          - type: recall_at_3
            value: 33.885
          - type: recall_at_5
            value: 38.99608333333334
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.371000000000002
          - type: map_at_10
            value: 27.532
          - type: map_at_100
            value: 28.443
          - type: map_at_1000
            value: 28.525
          - type: map_at_3
            value: 25.689
          - type: map_at_5
            value: 26.677
          - type: mrr_at_1
            value: 24.08
          - type: mrr_at_10
            value: 30.128
          - type: mrr_at_100
            value: 30.953999999999997
          - type: mrr_at_1000
            value: 31.022
          - type: mrr_at_3
            value: 28.298000000000002
          - type: mrr_at_5
            value: 29.317
          - type: ndcg_at_1
            value: 24.08
          - type: ndcg_at_10
            value: 31.212
          - type: ndcg_at_100
            value: 35.72
          - type: ndcg_at_1000
            value: 38.061
          - type: ndcg_at_3
            value: 27.705000000000002
          - type: ndcg_at_5
            value: 29.26
          - type: precision_at_1
            value: 24.08
          - type: precision_at_10
            value: 4.8469999999999995
          - type: precision_at_100
            value: 0.753
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 11.759
          - type: precision_at_5
            value: 8.097999999999999
          - type: recall_at_1
            value: 21.371000000000002
          - type: recall_at_10
            value: 40.089000000000006
          - type: recall_at_100
            value: 60.879000000000005
          - type: recall_at_1000
            value: 78.325
          - type: recall_at_3
            value: 30.175
          - type: recall_at_5
            value: 34.168
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.043999999999999
          - type: map_at_10
            value: 20.794
          - type: map_at_100
            value: 21.636
          - type: map_at_1000
            value: 21.753
          - type: map_at_3
            value: 19.006
          - type: map_at_5
            value: 19.994999999999997
          - type: mrr_at_1
            value: 18.066
          - type: mrr_at_10
            value: 24.157999999999998
          - type: mrr_at_100
            value: 24.936
          - type: mrr_at_1000
            value: 25.018
          - type: mrr_at_3
            value: 22.345000000000002
          - type: mrr_at_5
            value: 23.396
          - type: ndcg_at_1
            value: 18.066
          - type: ndcg_at_10
            value: 24.584
          - type: ndcg_at_100
            value: 28.869
          - type: ndcg_at_1000
            value: 31.94
          - type: ndcg_at_3
            value: 21.295
          - type: ndcg_at_5
            value: 22.820999999999998
          - type: precision_at_1
            value: 18.066
          - type: precision_at_10
            value: 4.381
          - type: precision_at_100
            value: 0.754
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 9.956
          - type: precision_at_5
            value: 7.123
          - type: recall_at_1
            value: 15.043999999999999
          - type: recall_at_10
            value: 32.665
          - type: recall_at_100
            value: 52.342
          - type: recall_at_1000
            value: 74.896
          - type: recall_at_3
            value: 23.402
          - type: recall_at_5
            value: 27.397
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.712
          - type: map_at_10
            value: 28.963
          - type: map_at_100
            value: 29.934
          - type: map_at_1000
            value: 30.049
          - type: map_at_3
            value: 27.086
          - type: map_at_5
            value: 28.163
          - type: mrr_at_1
            value: 26.586
          - type: mrr_at_10
            value: 32.792
          - type: mrr_at_100
            value: 33.692
          - type: mrr_at_1000
            value: 33.767
          - type: mrr_at_3
            value: 30.939
          - type: mrr_at_5
            value: 32.012
          - type: ndcg_at_1
            value: 26.586
          - type: ndcg_at_10
            value: 32.92
          - type: ndcg_at_100
            value: 37.891000000000005
          - type: ndcg_at_1000
            value: 40.647
          - type: ndcg_at_3
            value: 29.465000000000003
          - type: ndcg_at_5
            value: 31.106
          - type: precision_at_1
            value: 26.586
          - type: precision_at_10
            value: 5.177
          - type: precision_at_100
            value: 0.8540000000000001
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 12.903999999999998
          - type: precision_at_5
            value: 8.881
          - type: recall_at_1
            value: 22.712
          - type: recall_at_10
            value: 41.382000000000005
          - type: recall_at_100
            value: 63.866
          - type: recall_at_1000
            value: 83.29299999999999
          - type: recall_at_3
            value: 31.739
          - type: recall_at_5
            value: 35.988
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.64
          - type: map_at_10
            value: 28.432000000000002
          - type: map_at_100
            value: 29.848999999999997
          - type: map_at_1000
            value: 30.072
          - type: map_at_3
            value: 25.862000000000002
          - type: map_at_5
            value: 27.339000000000002
          - type: mrr_at_1
            value: 24.308
          - type: mrr_at_10
            value: 32.475
          - type: mrr_at_100
            value: 33.404
          - type: mrr_at_1000
            value: 33.477000000000004
          - type: mrr_at_3
            value: 30.203999999999997
          - type: mrr_at_5
            value: 31.558000000000003
          - type: ndcg_at_1
            value: 24.308
          - type: ndcg_at_10
            value: 33.79
          - type: ndcg_at_100
            value: 39.113
          - type: ndcg_at_1000
            value: 42.388
          - type: ndcg_at_3
            value: 29.738999999999997
          - type: ndcg_at_5
            value: 31.734
          - type: precision_at_1
            value: 24.308
          - type: precision_at_10
            value: 6.621
          - type: precision_at_100
            value: 1.322
          - type: precision_at_1000
            value: 0.22499999999999998
          - type: precision_at_3
            value: 14.032
          - type: precision_at_5
            value: 10.435
          - type: recall_at_1
            value: 19.64
          - type: recall_at_10
            value: 44.147999999999996
          - type: recall_at_100
            value: 68.31099999999999
          - type: recall_at_1000
            value: 90.022
          - type: recall_at_3
            value: 32.275999999999996
          - type: recall_at_5
            value: 37.717
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.443
          - type: map_at_10
            value: 23.45
          - type: map_at_100
            value: 24.41
          - type: map_at_1000
            value: 24.515
          - type: map_at_3
            value: 21.478
          - type: map_at_5
            value: 22.545
          - type: mrr_at_1
            value: 18.854000000000003
          - type: mrr_at_10
            value: 25.174999999999997
          - type: mrr_at_100
            value: 26.099
          - type: mrr_at_1000
            value: 26.179999999999996
          - type: mrr_at_3
            value: 23.352
          - type: mrr_at_5
            value: 24.331
          - type: ndcg_at_1
            value: 18.854000000000003
          - type: ndcg_at_10
            value: 26.99
          - type: ndcg_at_100
            value: 31.823
          - type: ndcg_at_1000
            value: 34.657
          - type: ndcg_at_3
            value: 23.195
          - type: ndcg_at_5
            value: 24.953
          - type: precision_at_1
            value: 18.854000000000003
          - type: precision_at_10
            value: 4.1770000000000005
          - type: precision_at_100
            value: 0.7100000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 9.797
          - type: precision_at_5
            value: 6.839
          - type: recall_at_1
            value: 17.443
          - type: recall_at_10
            value: 36.22
          - type: recall_at_100
            value: 58.548
          - type: recall_at_1000
            value: 80.104
          - type: recall_at_3
            value: 25.995
          - type: recall_at_5
            value: 30.375999999999998
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.283000000000001
          - type: map_at_10
            value: 16.121
          - type: map_at_100
            value: 17.818
          - type: map_at_1000
            value: 18.015
          - type: map_at_3
            value: 13.655000000000001
          - type: map_at_5
            value: 14.854999999999999
          - type: mrr_at_1
            value: 22.15
          - type: mrr_at_10
            value: 31.139
          - type: mrr_at_100
            value: 32.336999999999996
          - type: mrr_at_1000
            value: 32.39
          - type: mrr_at_3
            value: 27.861000000000004
          - type: mrr_at_5
            value: 29.754
          - type: ndcg_at_1
            value: 22.15
          - type: ndcg_at_10
            value: 22.852
          - type: ndcg_at_100
            value: 30.233999999999998
          - type: ndcg_at_1000
            value: 34.02
          - type: ndcg_at_3
            value: 18.394
          - type: ndcg_at_5
            value: 19.973
          - type: precision_at_1
            value: 22.15
          - type: precision_at_10
            value: 6.912
          - type: precision_at_100
            value: 1.4829999999999999
          - type: precision_at_1000
            value: 0.218
          - type: precision_at_3
            value: 12.899
          - type: precision_at_5
            value: 10.111
          - type: recall_at_1
            value: 10.283000000000001
          - type: recall_at_10
            value: 27.587
          - type: recall_at_100
            value: 53.273
          - type: recall_at_1000
            value: 74.74499999999999
          - type: recall_at_3
            value: 16.897000000000002
          - type: recall_at_5
            value: 21.084
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.038
          - type: map_at_10
            value: 20.153
          - type: map_at_100
            value: 28.610999999999997
          - type: map_at_1000
            value: 30.285
          - type: map_at_3
            value: 14.249
          - type: map_at_5
            value: 16.715
          - type: mrr_at_1
            value: 66.75
          - type: mrr_at_10
            value: 74.477
          - type: mrr_at_100
            value: 74.678
          - type: mrr_at_1000
            value: 74.695
          - type: mrr_at_3
            value: 72.625
          - type: mrr_at_5
            value: 73.8
          - type: ndcg_at_1
            value: 55.125
          - type: ndcg_at_10
            value: 41.837999999999994
          - type: ndcg_at_100
            value: 46.182
          - type: ndcg_at_1000
            value: 53.144000000000005
          - type: ndcg_at_3
            value: 46.084
          - type: ndcg_at_5
            value: 43.751
          - type: precision_at_1
            value: 66.75
          - type: precision_at_10
            value: 33.775
          - type: precision_at_100
            value: 10.803
          - type: precision_at_1000
            value: 2.191
          - type: precision_at_3
            value: 49.5
          - type: precision_at_5
            value: 42.4
          - type: recall_at_1
            value: 9.038
          - type: recall_at_10
            value: 25.988
          - type: recall_at_100
            value: 52.158
          - type: recall_at_1000
            value: 74.617
          - type: recall_at_3
            value: 15.675
          - type: recall_at_5
            value: 19.570999999999998
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 62.551
          - type: map_at_10
            value: 73.124
          - type: map_at_100
            value: 73.432
          - type: map_at_1000
            value: 73.447
          - type: map_at_3
            value: 71.297
          - type: map_at_5
            value: 72.489
          - type: mrr_at_1
            value: 67.23700000000001
          - type: mrr_at_10
            value: 77.438
          - type: mrr_at_100
            value: 77.645
          - type: mrr_at_1000
            value: 77.64999999999999
          - type: mrr_at_3
            value: 75.788
          - type: mrr_at_5
            value: 76.886
          - type: ndcg_at_1
            value: 67.23700000000001
          - type: ndcg_at_10
            value: 78.306
          - type: ndcg_at_100
            value: 79.526
          - type: ndcg_at_1000
            value: 79.825
          - type: ndcg_at_3
            value: 74.961
          - type: ndcg_at_5
            value: 76.91900000000001
          - type: precision_at_1
            value: 67.23700000000001
          - type: precision_at_10
            value: 9.875
          - type: precision_at_100
            value: 1.065
          - type: precision_at_1000
            value: 0.11
          - type: precision_at_3
            value: 29.353
          - type: precision_at_5
            value: 18.749
          - type: recall_at_1
            value: 62.551
          - type: recall_at_10
            value: 90.011
          - type: recall_at_100
            value: 95.06
          - type: recall_at_1000
            value: 97.033
          - type: recall_at_3
            value: 81.081
          - type: recall_at_5
            value: 85.87599999999999
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.636
          - type: map_at_10
            value: 28.627000000000002
          - type: map_at_100
            value: 30.262
          - type: map_at_1000
            value: 30.442000000000004
          - type: map_at_3
            value: 25.091
          - type: map_at_5
            value: 27.12
          - type: mrr_at_1
            value: 34.259
          - type: mrr_at_10
            value: 42.733
          - type: mrr_at_100
            value: 43.613
          - type: mrr_at_1000
            value: 43.663000000000004
          - type: mrr_at_3
            value: 40.406
          - type: mrr_at_5
            value: 41.687000000000005
          - type: ndcg_at_1
            value: 34.259
          - type: ndcg_at_10
            value: 35.613
          - type: ndcg_at_100
            value: 42.027
          - type: ndcg_at_1000
            value: 45.336999999999996
          - type: ndcg_at_3
            value: 32.435
          - type: ndcg_at_5
            value: 33.482
          - type: precision_at_1
            value: 34.259
          - type: precision_at_10
            value: 9.66
          - type: precision_at_100
            value: 1.6219999999999999
          - type: precision_at_1000
            value: 0.22300000000000003
          - type: precision_at_3
            value: 21.399
          - type: precision_at_5
            value: 15.741
          - type: recall_at_1
            value: 17.636
          - type: recall_at_10
            value: 41.955999999999996
          - type: recall_at_100
            value: 66.17
          - type: recall_at_1000
            value: 85.79599999999999
          - type: recall_at_3
            value: 29.853
          - type: recall_at_5
            value: 35.18
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.487
          - type: map_at_10
            value: 56.765
          - type: map_at_100
            value: 57.616
          - type: map_at_1000
            value: 57.679
          - type: map_at_3
            value: 53.616
          - type: map_at_5
            value: 55.623999999999995
          - type: mrr_at_1
            value: 78.974
          - type: mrr_at_10
            value: 84.622
          - type: mrr_at_100
            value: 84.776
          - type: mrr_at_1000
            value: 84.783
          - type: mrr_at_3
            value: 83.747
          - type: mrr_at_5
            value: 84.27900000000001
          - type: ndcg_at_1
            value: 78.974
          - type: ndcg_at_10
            value: 66.164
          - type: ndcg_at_100
            value: 69.03099999999999
          - type: ndcg_at_1000
            value: 70.261
          - type: ndcg_at_3
            value: 61.712
          - type: ndcg_at_5
            value: 64.22
          - type: precision_at_1
            value: 78.974
          - type: precision_at_10
            value: 13.520999999999999
          - type: precision_at_100
            value: 1.575
          - type: precision_at_1000
            value: 0.174
          - type: precision_at_3
            value: 38.501000000000005
          - type: precision_at_5
            value: 25.083
          - type: recall_at_1
            value: 39.487
          - type: recall_at_10
            value: 67.60300000000001
          - type: recall_at_100
            value: 78.744
          - type: recall_at_1000
            value: 86.914
          - type: recall_at_3
            value: 57.752
          - type: recall_at_5
            value: 62.708
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 24.224999999999998
          - type: map_at_10
            value: 37.791000000000004
          - type: map_at_100
            value: 38.899
          - type: map_at_1000
            value: 38.937
          - type: map_at_3
            value: 33.584
          - type: map_at_5
            value: 36.142
          - type: mrr_at_1
            value: 24.871
          - type: mrr_at_10
            value: 38.361000000000004
          - type: mrr_at_100
            value: 39.394
          - type: mrr_at_1000
            value: 39.427
          - type: mrr_at_3
            value: 34.224
          - type: mrr_at_5
            value: 36.767
          - type: ndcg_at_1
            value: 24.871
          - type: ndcg_at_10
            value: 45.231
          - type: ndcg_at_100
            value: 50.42100000000001
          - type: ndcg_at_1000
            value: 51.329
          - type: ndcg_at_3
            value: 36.77
          - type: ndcg_at_5
            value: 41.33
          - type: precision_at_1
            value: 24.871
          - type: precision_at_10
            value: 7.124999999999999
          - type: precision_at_100
            value: 0.971
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 15.659
          - type: precision_at_5
            value: 11.708
          - type: recall_at_1
            value: 24.224999999999998
          - type: recall_at_10
            value: 68.081
          - type: recall_at_100
            value: 91.818
          - type: recall_at_1000
            value: 98.65
          - type: recall_at_3
            value: 45.355000000000004
          - type: recall_at_5
            value: 56.26
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.904
          - type: map_at_10
            value: 12.784
          - type: map_at_100
            value: 15.628
          - type: map_at_1000
            value: 17.006
          - type: map_at_3
            value: 9.695
          - type: map_at_5
            value: 10.961
          - type: mrr_at_1
            value: 46.44
          - type: mrr_at_10
            value: 54.106
          - type: mrr_at_100
            value: 54.81700000000001
          - type: mrr_at_1000
            value: 54.858
          - type: mrr_at_3
            value: 52.837999999999994
          - type: mrr_at_5
            value: 53.627
          - type: ndcg_at_1
            value: 44.737
          - type: ndcg_at_10
            value: 33.967999999999996
          - type: ndcg_at_100
            value: 30.451
          - type: ndcg_at_1000
            value: 39.151
          - type: ndcg_at_3
            value: 39.871
          - type: ndcg_at_5
            value: 37.138
          - type: precision_at_1
            value: 46.44
          - type: precision_at_10
            value: 24.582
          - type: precision_at_100
            value: 7.715
          - type: precision_at_1000
            value: 2.0500000000000003
          - type: precision_at_3
            value: 37.461
          - type: precision_at_5
            value: 31.517
          - type: recall_at_1
            value: 5.904
          - type: recall_at_10
            value: 16.522000000000002
          - type: recall_at_100
            value: 29.413
          - type: recall_at_1000
            value: 61.611000000000004
          - type: recall_at_3
            value: 10.649000000000001
          - type: recall_at_5
            value: 12.642999999999999
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.561
          - type: map_at_10
            value: 46.406
          - type: map_at_100
            value: 47.499
          - type: map_at_1000
            value: 47.526
          - type: map_at_3
            value: 42.26
          - type: map_at_5
            value: 44.724000000000004
          - type: mrr_at_1
            value: 35.168
          - type: mrr_at_10
            value: 48.914
          - type: mrr_at_100
            value: 49.727
          - type: mrr_at_1000
            value: 49.744
          - type: mrr_at_3
            value: 45.418
          - type: mrr_at_5
            value: 47.53
          - type: ndcg_at_1
            value: 35.138999999999996
          - type: ndcg_at_10
            value: 53.943
          - type: ndcg_at_100
            value: 58.50300000000001
          - type: ndcg_at_1000
            value: 59.144
          - type: ndcg_at_3
            value: 46.135999999999996
          - type: ndcg_at_5
            value: 50.227999999999994
          - type: precision_at_1
            value: 35.138999999999996
          - type: precision_at_10
            value: 8.812000000000001
          - type: precision_at_100
            value: 1.138
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 20.867
          - type: precision_at_5
            value: 14.878
          - type: recall_at_1
            value: 31.561
          - type: recall_at_10
            value: 74.343
          - type: recall_at_100
            value: 93.975
          - type: recall_at_1000
            value: 98.75699999999999
          - type: recall_at_3
            value: 54.169
          - type: recall_at_5
            value: 63.56
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 69.753
          - type: map_at_10
            value: 83.56400000000001
          - type: map_at_100
            value: 84.19200000000001
          - type: map_at_1000
            value: 84.211
          - type: map_at_3
            value: 80.568
          - type: map_at_5
            value: 82.44500000000001
          - type: mrr_at_1
            value: 79.99000000000001
          - type: mrr_at_10
            value: 86.542
          - type: mrr_at_100
            value: 86.655
          - type: mrr_at_1000
            value: 86.656
          - type: mrr_at_3
            value: 85.505
          - type: mrr_at_5
            value: 86.21
          - type: ndcg_at_1
            value: 79.99000000000001
          - type: ndcg_at_10
            value: 87.449
          - type: ndcg_at_100
            value: 88.739
          - type: ndcg_at_1000
            value: 88.87
          - type: ndcg_at_3
            value: 84.418
          - type: ndcg_at_5
            value: 86.09599999999999
          - type: precision_at_1
            value: 79.99000000000001
          - type: precision_at_10
            value: 13.236999999999998
          - type: precision_at_100
            value: 1.516
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 36.736999999999995
          - type: precision_at_5
            value: 24.227999999999998
          - type: recall_at_1
            value: 69.753
          - type: recall_at_10
            value: 94.967
          - type: recall_at_100
            value: 99.378
          - type: recall_at_1000
            value: 99.953
          - type: recall_at_3
            value: 86.408
          - type: recall_at_5
            value: 91.03
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.8080000000000003
          - type: map_at_10
            value: 9.222
          - type: map_at_100
            value: 10.779
          - type: map_at_1000
            value: 11.027000000000001
          - type: map_at_3
            value: 6.729
          - type: map_at_5
            value: 7.872999999999999
          - type: mrr_at_1
            value: 18.7
          - type: mrr_at_10
            value: 28.084999999999997
          - type: mrr_at_100
            value: 29.134999999999998
          - type: mrr_at_1000
            value: 29.214000000000002
          - type: mrr_at_3
            value: 24.917
          - type: mrr_at_5
            value: 26.651999999999997
          - type: ndcg_at_1
            value: 18.7
          - type: ndcg_at_10
            value: 15.969
          - type: ndcg_at_100
            value: 22.535
          - type: ndcg_at_1000
            value: 27.337
          - type: ndcg_at_3
            value: 15.112
          - type: ndcg_at_5
            value: 13.089
          - type: precision_at_1
            value: 18.7
          - type: precision_at_10
            value: 8.32
          - type: precision_at_100
            value: 1.786
          - type: precision_at_1000
            value: 0.293
          - type: precision_at_3
            value: 14.099999999999998
          - type: precision_at_5
            value: 11.42
          - type: recall_at_1
            value: 3.8080000000000003
          - type: recall_at_10
            value: 16.872
          - type: recall_at_100
            value: 36.235
          - type: recall_at_1000
            value: 59.587
          - type: recall_at_3
            value: 8.583
          - type: recall_at_5
            value: 11.562999999999999
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 53.994
          - type: map_at_10
            value: 63.56
          - type: map_at_100
            value: 64.247
          - type: map_at_1000
            value: 64.275
          - type: map_at_3
            value: 61.23499999999999
          - type: map_at_5
            value: 62.638000000000005
          - type: mrr_at_1
            value: 57.333
          - type: mrr_at_10
            value: 65.23299999999999
          - type: mrr_at_100
            value: 65.762
          - type: mrr_at_1000
            value: 65.78699999999999
          - type: mrr_at_3
            value: 63.556000000000004
          - type: mrr_at_5
            value: 64.572
          - type: ndcg_at_1
            value: 57.333
          - type: ndcg_at_10
            value: 67.88300000000001
          - type: ndcg_at_100
            value: 70.99
          - type: ndcg_at_1000
            value: 71.66
          - type: ndcg_at_3
            value: 64.16
          - type: ndcg_at_5
            value: 66.042
          - type: precision_at_1
            value: 57.333
          - type: precision_at_10
            value: 8.967
          - type: precision_at_100
            value: 1.06
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 25.222
          - type: precision_at_5
            value: 16.467000000000002
          - type: recall_at_1
            value: 53.994
          - type: recall_at_10
            value: 79.289
          - type: recall_at_100
            value: 93.533
          - type: recall_at_1000
            value: 98.667
          - type: recall_at_3
            value: 69.267
          - type: recall_at_5
            value: 74.128
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.212
          - type: map_at_10
            value: 1.925
          - type: map_at_100
            value: 9.235
          - type: map_at_1000
            value: 22.111
          - type: map_at_3
            value: 0.626
          - type: map_at_5
            value: 1.031
          - type: mrr_at_1
            value: 82
          - type: mrr_at_10
            value: 90.5
          - type: mrr_at_100
            value: 90.5
          - type: mrr_at_1000
            value: 90.5
          - type: mrr_at_3
            value: 90
          - type: mrr_at_5
            value: 90.5
          - type: ndcg_at_1
            value: 75
          - type: ndcg_at_10
            value: 75.851
          - type: ndcg_at_100
            value: 53.190000000000005
          - type: ndcg_at_1000
            value: 45.507999999999996
          - type: ndcg_at_3
            value: 80.19500000000001
          - type: ndcg_at_5
            value: 78.448
          - type: precision_at_1
            value: 82
          - type: precision_at_10
            value: 82.6
          - type: precision_at_100
            value: 54.48
          - type: precision_at_1000
            value: 20.785999999999998
          - type: precision_at_3
            value: 86.667
          - type: precision_at_5
            value: 85.2
          - type: recall_at_1
            value: 0.212
          - type: recall_at_10
            value: 2.13
          - type: recall_at_100
            value: 12.152000000000001
          - type: recall_at_1000
            value: 42.403
          - type: recall_at_3
            value: 0.6689999999999999
          - type: recall_at_5
            value: 1.121
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.701
          - type: map_at_10
            value: 10.488999999999999
          - type: map_at_100
            value: 17.258000000000003
          - type: map_at_1000
            value: 18.797
          - type: map_at_3
            value: 5.563
          - type: map_at_5
            value: 7.268
          - type: mrr_at_1
            value: 30.612000000000002
          - type: mrr_at_10
            value: 48.197
          - type: mrr_at_100
            value: 48.762
          - type: mrr_at_1000
            value: 48.762
          - type: mrr_at_3
            value: 44.218
          - type: mrr_at_5
            value: 46.666999999999994
          - type: ndcg_at_1
            value: 28.571
          - type: ndcg_at_10
            value: 26.512
          - type: ndcg_at_100
            value: 38.356
          - type: ndcg_at_1000
            value: 49.57
          - type: ndcg_at_3
            value: 27.704
          - type: ndcg_at_5
            value: 27.342
          - type: precision_at_1
            value: 30.612000000000002
          - type: precision_at_10
            value: 24.285999999999998
          - type: precision_at_100
            value: 8
          - type: precision_at_1000
            value: 1.541
          - type: precision_at_3
            value: 29.252
          - type: precision_at_5
            value: 27.346999999999998
          - type: recall_at_1
            value: 2.701
          - type: recall_at_10
            value: 17.197000000000003
          - type: recall_at_100
            value: 49.061
          - type: recall_at_1000
            value: 82.82300000000001
          - type: recall_at_3
            value: 6.687
          - type: recall_at_5
            value: 9.868

DRAGON+ is a BERT-base sized dense retriever initialized from RetroMAE and further trained on the data augmented from MS MARCO corpus, following the approach described in How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval.

The associated GitHub repository is available here https://github.com/facebookresearch/dpr-scale/tree/main/dragon. We use asymmetric dual encoder, with two distinctly parameterized encoders. The following models are also available:

Model Initialization MARCO Dev BEIR Query Encoder Path Context Encoder Path
DRAGON+ Shitao/RetroMAE 39.0 47.4 facebook/dragon-plus-query-encoder facebook/dragon-plus-context-encoder
DRAGON-RoBERTa RoBERTa-base 39.4 47.2 facebook/dragon-roberta-query-encoder facebook/dragon-roberta-context-encoder

Usage (HuggingFace Transformers)

Using the model directly available in HuggingFace transformers .

import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('facebook/dragon-plus-query-encoder')
query_encoder = AutoModel.from_pretrained('facebook/dragon-plus-query-encoder')
context_encoder = AutoModel.from_pretrained('facebook/dragon-plus-context-encoder')

# We use msmarco query and passages as an example
query =  "Where was Marie Curie born?"
contexts = [
    "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.",
    "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace."
]
# Apply tokenizer
query_input = tokenizer(query, return_tensors='pt')
ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt')
# Compute embeddings: take the last-layer hidden state of the [CLS] token
query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :]
ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :]
# Compute similarity scores using dot product
score1 = query_emb @ ctx_emb[0]  # 396.5625
score2 = query_emb @ ctx_emb[1]  # 393.8340