whisper-base-id / README.md
evanarlian's picture
update model card README.md
f12d860
metadata
language:
  - id
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Base Indonesian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 id
          type: mozilla-foundation/common_voice_11_0
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 23.757262750161395

Whisper Base Indonesian

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_11_0 id dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5101
  • Wer: 23.7573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2041 4.95 500 0.3906 23.9140
0.015 9.9 1000 0.4619 24.3752
0.0032 14.85 1500 0.4901 23.7803
0.0015 19.8 2000 0.5101 23.7573
0.001 24.75 2500 0.5265 23.9786
0.0008 29.7 3000 0.5399 24.1216
0.0006 34.65 3500 0.5501 23.8956
0.0005 39.6 4000 0.5583 24.0570
0.0004 44.55 4500 0.5638 24.1815
0.0004 49.5 5000 0.5659 24.1492

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2