|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch LLaMA model.""" |
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings |
|
from transformers.models.llama.configuration_llama import LlamaConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "LlamaConfig" |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
class LlamaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
LlamaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
class LlamaRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
|
|
self.max_seq_len_cached = max_position_embeddings |
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False) |
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
if q is None: |
|
q_embed = None |
|
else: |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class LlamaMLP(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
class LandmarkGroupedSoftmaxFunction(torch.autograd.Function): |
|
|
|
|
|
@staticmethod |
|
def forward(ctx, x, dim, mem_cnt, resp_mem_idx): |
|
new_shape = list(x.shape) |
|
new_shape[dim] = mem_cnt |
|
max_by_group = x.new_zeros((*new_shape,)) |
|
max_by_group.scatter_reduce_(src=x, index=resp_mem_idx, dim=dim, reduce="amax", include_self=False) |
|
|
|
maxes = torch.gather(max_by_group, dim, resp_mem_idx) |
|
|
|
x_exp = torch.exp((x - maxes).to(torch.float32)) |
|
|
|
cumsum_by_group = torch.zeros_like(max_by_group, dtype=x_exp.dtype) |
|
|
|
cumsum_by_group.scatter_add_(dim, resp_mem_idx, x_exp, ) |
|
denom = torch.gather(cumsum_by_group, dim, resp_mem_idx) |
|
|
|
|
|
probs = x_exp / denom |
|
|
|
|
|
ctx.mem_cnt = mem_cnt |
|
ctx.dim = dim |
|
ctx.save_for_backward(resp_mem_idx, probs) |
|
|
|
return probs |
|
|
|
@staticmethod |
|
def backward(ctx, grad_probs): |
|
mem_cnt = ctx.mem_cnt |
|
dim = ctx.dim |
|
resp_mem_idx, probs = ctx.saved_tensors |
|
grad_x = grad_dim = grad_mem_cnt = grad_resp_mem_idx = None |
|
|
|
if ctx.needs_input_grad[0] or ctx.needs_input_grad[4]: |
|
grad_pair = grad_probs * probs |
|
|
|
new_shape = list(probs.shape) |
|
new_shape[dim] = mem_cnt |
|
cumsum_by_group = grad_pair.new_zeros((*new_shape,)) |
|
cumsum_by_group.scatter_add_(dim, resp_mem_idx, grad_pair) |
|
|
|
|
|
if ctx.needs_input_grad[0]: |
|
grad_sum = torch.gather(cumsum_by_group, dim, resp_mem_idx) |
|
grad_x = grad_pair - probs * grad_sum |
|
assert not ctx.needs_input_grad[1] |
|
assert not ctx.needs_input_grad[2] |
|
assert not ctx.needs_input_grad[3] |
|
|
|
return grad_x, grad_dim, grad_mem_cnt, grad_resp_mem_idx |
|
|
|
def landmark_grouped_softmax(x, dim, is_mem, last_section_mask): |
|
|
|
last_and_rest_mask = last_section_mask |
|
|
|
full_access_mask = is_mem | last_and_rest_mask |
|
|
|
max_mem_cnt = 16 |
|
mem_group_idx = torch.cumsum(is_mem, dim=dim) |
|
mem_bucket_id = max_mem_cnt - 1 |
|
resp_mem_idx = torch.where(last_and_rest_mask, |
|
max_mem_cnt - 1, |
|
torch.where(is_mem, mem_bucket_id, mem_group_idx)) |
|
probs = LandmarkGroupedSoftmaxFunction.apply(x, dim, max_mem_cnt, resp_mem_idx) |
|
|
|
new_shape = list(x.shape) |
|
new_shape[dim] = max_mem_cnt |
|
group_prob = probs.new_zeros((*new_shape, )) |
|
group_prob.scatter_(dim, torch.where(is_mem, mem_group_idx - 1, max_mem_cnt - 1), probs) |
|
probs = probs.mul(torch.where(full_access_mask, last_section_mask, torch.gather(group_prob, dim, resp_mem_idx))) |
|
|
|
|
|
return probs |
|
|
|
class LlamaAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings) |
|
|
|
self.mem_freq = None |
|
self.top_k = None |
|
self.max_cache_size = None |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): |
|
self.mem_freq = mem_freq |
|
self.top_k = top_k |
|
self.max_cache_size = max_cache_size |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
is_mem: Optional[torch.Tensor] = None, |
|
last_section_mask: Optional[torch.Tensor] = None, |
|
offload_cache_to_cpu: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
if len(past_key_value) > 2: |
|
kv_seq_len += past_key_value[3].shape[2] * past_key_value[3].shape[3] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
key_states_before_pos = key_states |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
|
|
attn_prefix = None |
|
if past_key_value is not None: |
|
|
|
if self.mem_freq is None: |
|
cache_len = past_key_value[0].shape[2] |
|
if self.max_cache_size is not None: |
|
cache_len = min(cache_len, self.max_cache_size) |
|
if is_mem is not None: |
|
is_mem = torch.cat((is_mem.new_zeros((1, 1, q_len, cache_len)), is_mem), dim=-1) |
|
last_section_mask = torch.cat((last_section_mask.new_ones((1, 1, q_len, cache_len)), last_section_mask), dim=-1) |
|
|
|
past_key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
past_value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
key_states = past_key_states[:, :, -(q_len + cache_len):] |
|
value_states = past_value_states[:, :, -(q_len + cache_len):] |
|
expected_att_size = (bsz, self.num_heads, q_len, cache_len + q_len) |
|
else: |
|
orig_value_states = value_states |
|
|
|
incomplete_len = past_key_value[0].shape[2] % (self.mem_freq + 1) |
|
full_len = past_key_value[0].shape[2] - incomplete_len |
|
past_key_mem, past_key_incomplete = torch.split(past_key_value[0], (full_len, incomplete_len), dim=2) |
|
past_value_mem, past_value_incomplete = torch.split(past_key_value[1], (full_len, incomplete_len), dim=2) |
|
|
|
if offload_cache_to_cpu: |
|
past_key_value = (past_key_incomplete, past_value_incomplete, *past_key_value[2:]) |
|
|
|
if incomplete_len > 0: |
|
assert q_len + incomplete_len <= (self.mem_freq + 1) |
|
is_mem = torch.cat((is_mem.new_zeros((1, 1, q_len, incomplete_len)), is_mem), dim=-1) |
|
last_section_mask = torch.cat((last_section_mask.new_ones((1, 1, q_len, incomplete_len)), last_section_mask), dim=-1) |
|
|
|
if len(past_key_value) > 2: |
|
full_len += past_key_value[3].shape[2] * past_key_value[3].shape[3] |
|
past_key_incomplete_pos = torch.arange(full_len, full_len + incomplete_len, dtype=torch.long, device=position_ids.device).unsqueeze(0) |
|
_, past_key_incomplete = apply_rotary_pos_emb(None, past_key_incomplete, cos, sin, past_key_incomplete_pos) |
|
key_states = torch.cat((past_key_incomplete, key_states), dim=2) |
|
value_states = torch.cat((past_value_incomplete, value_states), dim=2) |
|
|
|
past_key_mem = past_key_mem.view(bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim) |
|
past_value_mem = past_value_mem.view(bsz, self.num_heads, -1, self.mem_freq + 1, self.head_dim) |
|
|
|
if len(past_key_value) > 2: |
|
mem_key_nopos = torch.cat(( |
|
past_key_value[2], |
|
past_key_mem.select(dim=3, index=self.mem_freq)), dim=2) |
|
past_key_mem_offload = past_key_value[3] |
|
past_key_mem = torch.cat(( |
|
past_key_mem_offload, |
|
past_key_mem.to(past_key_mem_offload.device)), dim=2) |
|
past_value_mem = torch.cat((past_key_value[4], past_value_mem.to(past_key_mem_offload.device)), dim=2) |
|
else: |
|
mem_key_nopos = past_key_mem.select(dim=3, index=self.mem_freq) |
|
|
|
num_mems = past_key_mem.shape[2] |
|
top_k = min(self.top_k, num_mems) |
|
prefix_len = full_len - (top_k + 1) * (self.mem_freq + 1) |
|
mem_indices = torch.cat( |
|
(position_ids.new_zeros((max(0, num_mems - top_k), )), |
|
torch.arange(1, top_k + 1, device=query_states.device, dtype=position_ids.dtype)), dim=0) |
|
mem_pos = (mem_indices * (self.mem_freq + 1) + self.mem_freq).unsqueeze(0).expand(bsz, -1) + prefix_len |
|
_, mem_key = apply_rotary_pos_emb(None, mem_key_nopos, cos, sin, mem_pos) |
|
mem_attn_weights = torch.matmul(query_states, mem_key.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if offload_cache_to_cpu: |
|
aggregate = "max_over_tokens" |
|
else: |
|
aggregate = None |
|
if aggregate == "max_over_tokens": |
|
token_retrievers = 1 |
|
head_retrievers = self.num_heads |
|
mem_attn_weights = torch.nn.functional.softmax(mem_attn_weights, dim=-1) |
|
mem_attn_weights = mem_attn_weights.amax(dim=2, keepdim=True) |
|
elif aggregate is None: |
|
token_retrievers = q_len |
|
head_retrievers = self.num_heads |
|
else: |
|
raise NotImplementedError() |
|
|
|
mem_selected_idx = mem_attn_weights.topk(dim=-1,k=top_k)[1].sort(dim=-1)[0].view(bsz, head_retrievers, token_retrievers, top_k) |
|
|
|
selected_indices = torch.arange(0, top_k * (self.mem_freq + 1), device=query_states.device, dtype=position_ids.dtype) |
|
selected_indices = torch.where(mem_selected_idx >= num_mems - top_k, self.mem_freq + 1, 0).unsqueeze(-1) + selected_indices.view(1, 1, 1, top_k, self.mem_freq + 1) |
|
selected_indices = selected_indices.view(bsz, head_retrievers, token_retrievers, -1).expand(bsz, self.num_heads, q_len, -1) + prefix_len |
|
|
|
|
|
|
|
|
|
mem_selected_idx = mem_selected_idx.to(past_key_mem.device) |
|
|
|
mem_selected_idx = mem_selected_idx.view(bsz, self.num_heads, token_retrievers, top_k, 1, 1).expand(bsz, self.num_heads, token_retrievers, top_k, self.mem_freq + 1, self.head_dim) |
|
selected_keys = past_key_mem.unsqueeze(2).expand(bsz, self.num_heads, token_retrievers, -1, self.mem_freq + 1, self.head_dim) |
|
selected_keys = selected_keys.take_along_dim(mem_selected_idx, dim=3).to(query_states.device) |
|
selected_values = past_value_mem.unsqueeze(2).expand(bsz, self.num_heads, token_retrievers, -1, self.mem_freq + 1, self.head_dim).take_along_dim(mem_selected_idx, dim=3).to(query_states.device) |
|
|
|
selected_keys = selected_keys.view(bsz, self.num_heads, token_retrievers, -1, self.head_dim).expand(bsz, self.num_heads, q_len, -1, self.head_dim) |
|
selected_keys = apply_rotary_pos_emb(None, selected_keys.unsqueeze(1), cos, sin, selected_indices)[1].squeeze(1) |
|
selected_values = selected_values.view(bsz, self.num_heads, token_retrievers, -1, self.head_dim).expand(bsz, self.num_heads, q_len, -1, self.head_dim) |
|
attn_prefix = torch.matmul(query_states.unsqueeze(3), selected_keys.transpose(3, 4)).squeeze(3) / math.sqrt(self.head_dim) |
|
is_mem_prefix = torch.cat((is_mem.new_zeros((self.mem_freq, )), is_mem.new_ones((1, )))).unsqueeze(0).repeat((top_k, 1)) |
|
is_mem_prefix = is_mem_prefix.view(1, 1, 1, -1).expand(1, 1, q_len, -1) |
|
is_mem = torch.cat((is_mem_prefix, is_mem), dim=-1) |
|
last_section_mask = torch.cat((last_section_mask.new_zeros((1, 1, q_len, top_k * (self.mem_freq + 1))), last_section_mask), dim=-1) |
|
expected_att_size = (bsz, self.num_heads, q_len, q_len + incomplete_len) |
|
|
|
past_key_states = torch.cat([past_key_value[0], key_states_before_pos], dim=2) |
|
past_value_states = torch.cat([past_key_value[1], orig_value_states], dim=2) |
|
|
|
if offload_cache_to_cpu: |
|
past_key_value = (past_key_states, past_value_states, mem_key_nopos, past_key_mem.to("cpu"), past_value_mem.to("cpu"), *past_key_value[5:]) if use_cache else None |
|
else: |
|
past_key_value = (past_key_states, past_value_states) if use_cache else None |
|
|
|
else: |
|
if self.mem_freq is None: |
|
past_key_states = key_states |
|
else: |
|
past_key_states = key_states_before_pos |
|
past_value_states = value_states |
|
expected_att_size = (bsz, self.num_heads, q_len, kv_seq_len) |
|
past_key_value = (past_key_states, past_value_states) if use_cache else None |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
if attn_weights.size() != expected_att_size: |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask[...,-attn_weights.shape[-1]:] |
|
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) |
|
if attn_prefix is not None: |
|
attn_weights = torch.cat((attn_prefix, attn_weights), dim=-1) |
|
|
|
if is_mem is None: |
|
raise ValueError("Don't use this without landmarks") |
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
else: |
|
attn_weights = landmark_grouped_softmax(attn_weights, dim=-1, is_mem=is_mem.expand(-1, self.num_heads, -1, -1), last_section_mask=last_section_mask).to(query_states.dtype) |
|
if attn_prefix is not None: |
|
attn_prefix, attn_weights = torch.split(attn_weights, (attn_prefix.shape[-1], attn_weights.shape[-1] - attn_prefix.shape[-1]), dim=-1) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
if attn_prefix is not None: |
|
attn_output += torch.matmul(attn_prefix.unsqueeze(3), selected_values).squeeze(3) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class LlamaDecoderLayer(nn.Module): |
|
def __init__(self, config: LlamaConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = LlamaAttention(config=config) |
|
self.mlp = LlamaMLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): |
|
self.self_attn.set_mem_cache_args(mem_freq, top_k, max_cache_size) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
is_mem: Optional[torch.Tensor] = None, |
|
last_section_mask: Optional[torch.Tensor] = None, |
|
offload_cache_to_cpu: bool = False |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
is_mem=is_mem, |
|
last_section_mask=last_section_mask, |
|
offload_cache_to_cpu=offload_cache_to_cpu |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
LLAMA_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`LlamaConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LLAMA_START_DOCSTRING, |
|
) |
|
class LlamaPreTrainedModel(PreTrainedModel): |
|
config_class = LlamaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LlamaDecoderLayer"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, LlamaModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
LLAMA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LLAMA_START_DOCSTRING, |
|
) |
|
class LlamaModel(LlamaPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] |
|
|
|
Args: |
|
config: LlamaConfig |
|
""" |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.mem_id = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def set_mem_id(self, mem_id): |
|
self.mem_id = mem_id |
|
|
|
def set_mem_cache_args(self, mem_freq, top_k, max_cache_size): |
|
for l in self.layers: |
|
l.set_mem_cache_args(mem_freq, top_k, max_cache_size) |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
offload_cache_to_cpu: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
is_mem = None |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
if self.mem_id is not None: |
|
with torch.no_grad(): |
|
is_mem = input_ids == self.mem_id |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
if self.mem_id is not None: |
|
raise NotImplementedError |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
if is_mem is not None: |
|
pass |
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
if len(past_key_values[0]) > 2: |
|
past_key_values_length += past_key_values[0][3].shape[2] * past_key_values[0][3].shape[3] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
last_section_mask = None |
|
if is_mem is not None: |
|
is_mem = is_mem.unsqueeze(1).unsqueeze(2) |
|
current_len = input_ids.shape[1] |
|
mem_ids = torch.where(attention_mask[..., -current_len:] < -1, 0, torch.cumsum(is_mem, -1) - is_mem.int()) |
|
last_section_mask = torch.amax(mem_ids, -1, keepdim=True) == mem_ids |
|
attention_mask[..., -current_len:].masked_fill_(last_section_mask & is_mem, torch.tensor(torch.finfo(inputs_embeds.dtype).min, device=inputs_embeds.device)) |
|
last_section_mask.logical_and_(attention_mask[..., -current_len:] > -1) |
|
is_mem = is_mem.logical_and(attention_mask[..., -current_len:] > -1) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
None, |
|
is_mem, |
|
last_section_mask |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
is_mem=is_mem, |
|
last_section_mask=last_section_mask, |
|
offload_cache_to_cpu=offload_cache_to_cpu |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class LlamaForCausalLM(LlamaPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = LlamaModel(config) |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.set_mem_id(config.mem_id) |
|
self.set_mem_cache_args(config.mem_max_seq_len, config.mem_freq, config.mem_top_k, config.mem_max_cache_size) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
offload_cache_to_cpu: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM |
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
window_len = self.max_seq_len or input_ids.shape[1] |
|
last_logits = None |
|
for step, idx in enumerate(range(0, input_ids.shape[1], window_len)): |
|
if idx >= 1: |
|
if output_attentions or output_hidden_states: |
|
raise NotImplementedError |
|
if not use_cache: |
|
raise NotImplementedError |
|
outputs = self.model( |
|
input_ids=input_ids[:, idx:idx + window_len], |
|
attention_mask=attention_mask[:, :idx + window_len + attention_mask.shape[1] - input_ids.shape[1]] if attention_mask is not None else None, |
|
position_ids=position_ids[:, idx:idx + window_len] if position_ids is not None else None, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds[:, idx:idx + window_len] if inputs_embeds is not None else None, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
offload_cache_to_cpu=offload_cache_to_cpu, |
|
) |
|
past_key_values = outputs[1] |
|
if last_logits is not None: |
|
last_logits = torch.cat((last_logits, outputs[0]), dim=-2) |
|
last_logits = outputs[0] |
|
|
|
hidden_states = last_logits |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def set_mem_id(self, mem_id): |
|
self.mem_id = mem_id |
|
self.model.set_mem_id(mem_id) |
|
|
|
def set_mem_cache_args(self, max_seq_len, mem_freq, top_k, max_cache_size): |
|
self.mem_freq = mem_freq |
|
self.top_k = top_k |
|
self.max_seq_len = max_seq_len |
|
if self.max_seq_len is not None: |
|
assert self.max_seq_len % (self.mem_freq + 1) == 0 |
|
self.model.set_mem_cache_args(mem_freq, top_k, max_cache_size) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
total_len = input_ids.shape[1] |
|
if past_key_values: |
|
prev_len = input_ids.shape[1] - 1 |
|
else: |
|
prev_len = 0 |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if self.mem_freq is not None: |
|
if position_ids is not None: |
|
raise NotImplementedError |
|
T = input_ids.shape[1] |
|
|
|
prev_incomplete_len = prev_len % self.mem_freq |
|
prev_complete_len = prev_len - prev_incomplete_len |
|
incomplete_len = total_len % self.mem_freq |
|
new_full_len = total_len - prev_complete_len - incomplete_len |
|
|
|
prev_input, input_ids_with_mem, input_ids_without_mem = torch.split(input_ids, (prev_complete_len, new_full_len, incomplete_len), dim=-1) |
|
|
|
bsz, q_len = input_ids.size() |
|
input_ids_with_mem = input_ids_with_mem.view(bsz, -1, self.mem_freq) |
|
input_ids_with_mem = torch.cat( |
|
( |
|
input_ids_with_mem, |
|
input_ids_with_mem.new_full((bsz, input_ids_with_mem.shape[1], 1), self.mem_id) |
|
), |
|
dim=-1 |
|
).view(bsz, -1) |
|
input_ids = torch.cat((prev_input, input_ids_with_mem, input_ids_without_mem), dim=-1) |
|
if attention_mask is not None: |
|
attention_mask_with_mem, attention_mask_without_mem = torch.split(attention_mask, (prev_complete_len + new_full_len, incomplete_len), dim=-1) |
|
attention_mask_with_mem = attention_mask_with_mem.view(bsz, -1, self.mem_freq) |
|
attention_mask_with_mem = torch.cat( |
|
( |
|
attention_mask_with_mem, |
|
attention_mask_with_mem.new_ones((bsz, attention_mask_with_mem.shape[1], 1)) |
|
), |
|
dim=-1 |
|
).view(bsz, -1) |
|
attention_mask = torch.cat((attention_mask_with_mem, attention_mask_without_mem), dim=-1) |
|
|
|
|
|
input_ids = input_ids[:, prev_len:] |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
position_ids = position_ids[:, -input_ids.shape[1]:].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None and self.mem_freq is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"offload_cache_to_cpu": kwargs.get("offload_cache_to_cpu") |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The LLaMa Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
LLAMA_START_DOCSTRING, |
|
) |
|
class LlamaForSequenceClassification(LlamaPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = LlamaModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|