Add generate_amps.py
Browse files- src/generate_amps.py +389 -0
src/generate_amps.py
ADDED
|
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import os
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
#d Import torchdiffeq for proper ODE solving
|
| 8 |
+
try:
|
| 9 |
+
from torchdiffeq import odeint
|
| 10 |
+
TORCHDIFFEQ_AVAILABLE = True
|
| 11 |
+
print("✓ torchdiffeq available for proper ODE solving")
|
| 12 |
+
except ImportError:
|
| 13 |
+
TORCHDIFFEQ_AVAILABLE = False
|
| 14 |
+
print("⚠️ torchdiffeq not available, using manual Euler integration")
|
| 15 |
+
|
| 16 |
+
# Import your components
|
| 17 |
+
from compressor_with_embeddings import Compressor, Decompressor
|
| 18 |
+
from final_flow_model import AMPFlowMatcherCFGConcat, AMPProtFlowPipelineCFG
|
| 19 |
+
|
| 20 |
+
class AMPGenerator:
|
| 21 |
+
"""
|
| 22 |
+
Generate AMP samples using trained ProtFlow model.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, model_path, device='cuda'):
|
| 26 |
+
self.device = device
|
| 27 |
+
|
| 28 |
+
# Load models
|
| 29 |
+
self._load_models(model_path)
|
| 30 |
+
|
| 31 |
+
# Load preprocessing statistics
|
| 32 |
+
self.stats = torch.load('normalization_stats.pt', map_location=device)
|
| 33 |
+
|
| 34 |
+
def _load_models(self, model_path):
|
| 35 |
+
"""Load trained models."""
|
| 36 |
+
print("Loading trained models...")
|
| 37 |
+
|
| 38 |
+
# Load compressor and decompressor
|
| 39 |
+
self.compressor = Compressor().to(self.device)
|
| 40 |
+
self.decompressor = Decompressor().to(self.device)
|
| 41 |
+
|
| 42 |
+
self.compressor.load_state_dict(torch.load('/data2/edwardsun/flow_amp/models/final_compressor_model.pth', map_location=self.device))
|
| 43 |
+
self.decompressor.load_state_dict(torch.load('/data2/edwardsun/flow_amp/models/final_decompressor_model.pth', map_location=self.device))
|
| 44 |
+
|
| 45 |
+
# Load flow matching model with CFG
|
| 46 |
+
self.flow_model = AMPFlowMatcherCFGConcat(
|
| 47 |
+
hidden_dim=480,
|
| 48 |
+
compressed_dim=80, # 1280 // 16
|
| 49 |
+
n_layers=12,
|
| 50 |
+
n_heads=16,
|
| 51 |
+
dim_ff=3072,
|
| 52 |
+
max_seq_len=25,
|
| 53 |
+
use_cfg=True
|
| 54 |
+
).to(self.device)
|
| 55 |
+
|
| 56 |
+
checkpoint = torch.load(model_path, map_location=self.device, weights_only=False)
|
| 57 |
+
|
| 58 |
+
# Handle PyTorch compilation wrapper
|
| 59 |
+
state_dict = checkpoint['flow_model_state_dict']
|
| 60 |
+
new_state_dict = {}
|
| 61 |
+
|
| 62 |
+
for key, value in state_dict.items():
|
| 63 |
+
# Remove _orig_mod prefix if present
|
| 64 |
+
if key.startswith('_orig_mod.'):
|
| 65 |
+
new_key = key[10:] # Remove '_orig_mod.' prefix
|
| 66 |
+
else:
|
| 67 |
+
new_key = key
|
| 68 |
+
new_state_dict[new_key] = value
|
| 69 |
+
|
| 70 |
+
self.flow_model.load_state_dict(new_state_dict)
|
| 71 |
+
|
| 72 |
+
print(f"✓ All models loaded successfully from step {checkpoint['step']}!")
|
| 73 |
+
print(f" Loss at checkpoint: {checkpoint['loss']:.6f}")
|
| 74 |
+
|
| 75 |
+
# Initialize ODE solving capabilities
|
| 76 |
+
if TORCHDIFFEQ_AVAILABLE:
|
| 77 |
+
print("✓ Enhanced with proper ODE solving (torchdiffeq)")
|
| 78 |
+
else:
|
| 79 |
+
print("⚠️ Using fallback Euler integration")
|
| 80 |
+
|
| 81 |
+
def _create_ode_func(self, cfg_scale=7.5):
|
| 82 |
+
"""Create ODE function for torchdiffeq integration."""
|
| 83 |
+
|
| 84 |
+
def ode_func(t, x):
|
| 85 |
+
"""
|
| 86 |
+
ODE function: dx/dt = v_theta(x, t)
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
t: scalar time (single float)
|
| 90 |
+
x: state tensor [B*L*D] (flattened)
|
| 91 |
+
Returns:
|
| 92 |
+
dx/dt: derivative [B*L*D] (flattened)
|
| 93 |
+
"""
|
| 94 |
+
# Reshape x back to [B, L, D]
|
| 95 |
+
batch_size, seq_len, dim = self.current_shape
|
| 96 |
+
x = x.view(batch_size, seq_len, dim)
|
| 97 |
+
|
| 98 |
+
# Create time tensor for batch
|
| 99 |
+
t_tensor = torch.full((batch_size,), t, device=self.device, dtype=x.dtype)
|
| 100 |
+
|
| 101 |
+
# Compute vector field with CFG
|
| 102 |
+
if cfg_scale > 0:
|
| 103 |
+
# With AMP condition
|
| 104 |
+
amp_labels = torch.full((batch_size,), 0, device=self.device) # 0 = AMP
|
| 105 |
+
vt_cond = self.flow_model(x, t_tensor, labels=amp_labels)
|
| 106 |
+
|
| 107 |
+
# Without condition (mask)
|
| 108 |
+
mask_labels = torch.full((batch_size,), 2, device=self.device) # 2 = Mask
|
| 109 |
+
vt_uncond = self.flow_model(x, t_tensor, labels=mask_labels)
|
| 110 |
+
|
| 111 |
+
# CFG interpolation
|
| 112 |
+
vt = vt_uncond + cfg_scale * (vt_cond - vt_uncond)
|
| 113 |
+
else:
|
| 114 |
+
# No CFG, use mask label
|
| 115 |
+
mask_labels = torch.full((batch_size,), 2, device=self.device)
|
| 116 |
+
vt = self.flow_model(x, t_tensor, labels=mask_labels)
|
| 117 |
+
|
| 118 |
+
# Return flattened derivative
|
| 119 |
+
return vt.view(-1)
|
| 120 |
+
|
| 121 |
+
return ode_func
|
| 122 |
+
|
| 123 |
+
def generate_amps(self, num_samples=100, num_steps=25, batch_size=32, cfg_scale=7.5,
|
| 124 |
+
ode_method='dopri5', rtol=1e-5, atol=1e-6):
|
| 125 |
+
"""
|
| 126 |
+
Generate AMP samples using flow matching with CFG and improved ODE solving.
|
| 127 |
+
|
| 128 |
+
Args:
|
| 129 |
+
num_samples: Number of AMP samples to generate
|
| 130 |
+
num_steps: Number of ODE solving steps (25 for good quality, 1 for reflow)
|
| 131 |
+
batch_size: Batch size for generation
|
| 132 |
+
cfg_scale: CFG guidance scale (higher = stronger conditioning)
|
| 133 |
+
ode_method: ODE solver method ('dopri5', 'rk4', 'euler', 'adaptive_heun')
|
| 134 |
+
rtol: Relative tolerance for adaptive solvers
|
| 135 |
+
atol: Absolute tolerance for adaptive solvers
|
| 136 |
+
"""
|
| 137 |
+
method_str = f"{ode_method} ODE solver" if TORCHDIFFEQ_AVAILABLE and ode_method != 'euler' else "manual Euler integration"
|
| 138 |
+
print(f"Generating {num_samples} AMP samples with {method_str} (CFG scale: {cfg_scale})...")
|
| 139 |
+
if TORCHDIFFEQ_AVAILABLE and ode_method != 'euler':
|
| 140 |
+
print(f" Method: {ode_method}, rtol={rtol}, atol={atol}")
|
| 141 |
+
|
| 142 |
+
self.flow_model.eval()
|
| 143 |
+
self.compressor.eval()
|
| 144 |
+
self.decompressor.eval()
|
| 145 |
+
|
| 146 |
+
all_generated = []
|
| 147 |
+
|
| 148 |
+
with torch.no_grad():
|
| 149 |
+
for i in tqdm(range(0, num_samples, batch_size), desc="Generating with improved ODE"):
|
| 150 |
+
current_batch = min(batch_size, num_samples - i)
|
| 151 |
+
|
| 152 |
+
# Sample random noise (starting point at t=1)
|
| 153 |
+
eps = torch.randn(current_batch, 25, 80, device=self.device) # [B, L', COMP_DIM]
|
| 154 |
+
|
| 155 |
+
# Choose ODE solving method
|
| 156 |
+
if TORCHDIFFEQ_AVAILABLE and ode_method != 'euler':
|
| 157 |
+
# Use proper ODE solver
|
| 158 |
+
try:
|
| 159 |
+
# Store shape for ODE function
|
| 160 |
+
self.current_shape = eps.shape
|
| 161 |
+
|
| 162 |
+
# Create ODE function
|
| 163 |
+
ode_func = self._create_ode_func(cfg_scale=cfg_scale)
|
| 164 |
+
|
| 165 |
+
# Time span: from t=1 (noise) to t=0 (data)
|
| 166 |
+
t_span = torch.tensor([1.0, 0.0], device=self.device, dtype=eps.dtype)
|
| 167 |
+
|
| 168 |
+
# Flatten initial condition for torchdiffeq
|
| 169 |
+
y0 = eps.view(-1)
|
| 170 |
+
|
| 171 |
+
# Solve ODE with proper adaptive solver
|
| 172 |
+
if ode_method in ['dopri5', 'adaptive_heun']:
|
| 173 |
+
# Adaptive solvers
|
| 174 |
+
solution = odeint(
|
| 175 |
+
ode_func, y0, t_span,
|
| 176 |
+
method=ode_method,
|
| 177 |
+
rtol=rtol,
|
| 178 |
+
atol=atol,
|
| 179 |
+
options={'max_num_steps': 1000}
|
| 180 |
+
)
|
| 181 |
+
else:
|
| 182 |
+
# Fixed-step solvers
|
| 183 |
+
solution = odeint(
|
| 184 |
+
ode_func, y0, t_span,
|
| 185 |
+
method=ode_method,
|
| 186 |
+
options={'step_size': 0.04} # 1/25 for 25 steps
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Get final solution (at t=0)
|
| 190 |
+
xt = solution[-1].view(self.current_shape)
|
| 191 |
+
|
| 192 |
+
except Exception as e:
|
| 193 |
+
print(f"⚠️ ODE solving failed for batch {i//batch_size + 1}: {e}")
|
| 194 |
+
print("Falling back to Euler method...")
|
| 195 |
+
# Fall through to Euler method
|
| 196 |
+
xt = self._generate_with_euler(eps, current_batch, cfg_scale, num_steps)
|
| 197 |
+
else:
|
| 198 |
+
# Use manual Euler integration (original method)
|
| 199 |
+
xt = self._generate_with_euler(eps, current_batch, cfg_scale, num_steps)
|
| 200 |
+
|
| 201 |
+
# Decompress to get embeddings
|
| 202 |
+
decompressed = self.decompressor(xt) # [B, L, ESM_DIM]
|
| 203 |
+
|
| 204 |
+
# Apply reverse preprocessing
|
| 205 |
+
m, s, mn, mx = self.stats['mean'], self.stats['std'], self.stats['min'], self.stats['max']
|
| 206 |
+
decompressed = decompressed * (mx - mn + 1e-8) + mn
|
| 207 |
+
decompressed = decompressed * s + m
|
| 208 |
+
|
| 209 |
+
all_generated.append(decompressed.cpu())
|
| 210 |
+
|
| 211 |
+
# Concatenate all batches
|
| 212 |
+
generated_embeddings = torch.cat(all_generated, dim=0)
|
| 213 |
+
|
| 214 |
+
print(f"✓ Generated {generated_embeddings.shape[0]} AMP embeddings")
|
| 215 |
+
print(f" Shape: {generated_embeddings.shape}")
|
| 216 |
+
print(f" Stats - Mean: {generated_embeddings.mean():.4f}, Std: {generated_embeddings.std():.4f}")
|
| 217 |
+
|
| 218 |
+
return generated_embeddings
|
| 219 |
+
|
| 220 |
+
def _generate_with_euler(self, eps, current_batch, cfg_scale, num_steps):
|
| 221 |
+
"""Fallback Euler integration method (original implementation)."""
|
| 222 |
+
xt = eps.clone()
|
| 223 |
+
amp_labels = torch.full((current_batch,), 0, device=self.device) # 0 = AMP
|
| 224 |
+
mask_labels = torch.full((current_batch,), 2, device=self.device) # 2 = Mask
|
| 225 |
+
|
| 226 |
+
for step in range(num_steps):
|
| 227 |
+
t = torch.ones(current_batch, device=self.device) * (1.0 - step/num_steps)
|
| 228 |
+
|
| 229 |
+
# CFG: Generate with condition and without condition
|
| 230 |
+
if cfg_scale > 0:
|
| 231 |
+
# With AMP condition
|
| 232 |
+
vt_cond = self.flow_model(xt, t, labels=amp_labels)
|
| 233 |
+
|
| 234 |
+
# Without condition (mask)
|
| 235 |
+
vt_uncond = self.flow_model(xt, t, labels=mask_labels)
|
| 236 |
+
|
| 237 |
+
# CFG interpolation
|
| 238 |
+
vt = vt_uncond + cfg_scale * (vt_cond - vt_uncond)
|
| 239 |
+
else:
|
| 240 |
+
# No CFG, use mask label
|
| 241 |
+
vt = self.flow_model(xt, t, labels=mask_labels)
|
| 242 |
+
|
| 243 |
+
# Euler step for backward integration (t: 1 -> 0)
|
| 244 |
+
dt = -1.0 / num_steps
|
| 245 |
+
xt = xt + vt * dt
|
| 246 |
+
|
| 247 |
+
return xt
|
| 248 |
+
|
| 249 |
+
def compare_ode_methods(self, num_samples=20, cfg_scale=7.5):
|
| 250 |
+
"""
|
| 251 |
+
Compare different ODE solving methods for quality assessment.
|
| 252 |
+
"""
|
| 253 |
+
if not TORCHDIFFEQ_AVAILABLE:
|
| 254 |
+
print("⚠️ torchdiffeq not available, cannot compare ODE methods")
|
| 255 |
+
return self.generate_amps(num_samples=num_samples, cfg_scale=cfg_scale)
|
| 256 |
+
|
| 257 |
+
methods = ['euler', 'rk4', 'dopri5', 'adaptive_heun']
|
| 258 |
+
results = {}
|
| 259 |
+
|
| 260 |
+
print("🔬 Comparing ODE solving methods...")
|
| 261 |
+
|
| 262 |
+
for method in methods:
|
| 263 |
+
print(f"\n--- Testing {method} ---")
|
| 264 |
+
try:
|
| 265 |
+
start_time = torch.cuda.Event(enable_timing=True)
|
| 266 |
+
end_time = torch.cuda.Event(enable_timing=True)
|
| 267 |
+
|
| 268 |
+
start_time.record()
|
| 269 |
+
embeddings = self.generate_amps(
|
| 270 |
+
num_samples=num_samples,
|
| 271 |
+
batch_size=10,
|
| 272 |
+
cfg_scale=cfg_scale,
|
| 273 |
+
ode_method=method
|
| 274 |
+
)
|
| 275 |
+
end_time.record()
|
| 276 |
+
|
| 277 |
+
torch.cuda.synchronize()
|
| 278 |
+
elapsed_time = start_time.elapsed_time(end_time) / 1000.0 # Convert to seconds
|
| 279 |
+
|
| 280 |
+
results[method] = {
|
| 281 |
+
'embeddings': embeddings,
|
| 282 |
+
'time': elapsed_time,
|
| 283 |
+
'mean': embeddings.mean().item(),
|
| 284 |
+
'std': embeddings.std().item(),
|
| 285 |
+
'success': True
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
print(f"✓ {method}: {elapsed_time:.2f}s, mean={embeddings.mean():.4f}, std={embeddings.std():.4f}")
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
print(f"❌ {method} failed: {e}")
|
| 292 |
+
results[method] = {'success': False, 'error': str(e)}
|
| 293 |
+
|
| 294 |
+
return results
|
| 295 |
+
|
| 296 |
+
def generate_with_reflow(self, num_samples=100):
|
| 297 |
+
"""
|
| 298 |
+
Generate AMP samples using 1-step reflow (if you have reflow model).
|
| 299 |
+
"""
|
| 300 |
+
print(f"Generating {num_samples} AMP samples with 1-step reflow...")
|
| 301 |
+
|
| 302 |
+
# This would use the reflow implementation
|
| 303 |
+
# For now, just use 1-step generation
|
| 304 |
+
return self.generate_amps(num_samples=num_samples, num_steps=1, batch_size=32)
|
| 305 |
+
|
| 306 |
+
def main():
|
| 307 |
+
"""Main generation function."""
|
| 308 |
+
print("=== AMP Generation Pipeline with CFG ===")
|
| 309 |
+
|
| 310 |
+
# Use the best model from training (lowest validation loss: 0.017183)
|
| 311 |
+
model_path = '/data2/edwardsun/flow_checkpoints/amp_flow_model_best_optimized.pth'
|
| 312 |
+
|
| 313 |
+
# Check if checkpoint exists
|
| 314 |
+
try:
|
| 315 |
+
checkpoint = torch.load(model_path, map_location='cpu', weights_only=False)
|
| 316 |
+
print(f"✓ Found best model at step {checkpoint['step']} with loss {checkpoint['loss']:.6f}")
|
| 317 |
+
print(f" Global step: {checkpoint['global_step']}")
|
| 318 |
+
print(f" Total samples: {checkpoint['total_samples']:,}")
|
| 319 |
+
except:
|
| 320 |
+
print(f"❌ Best model not found: {model_path}")
|
| 321 |
+
print("Please train the flow matching model first using amp_flow_training.py")
|
| 322 |
+
return
|
| 323 |
+
|
| 324 |
+
# Initialize generator
|
| 325 |
+
generator = AMPGenerator(model_path, device='cuda')
|
| 326 |
+
|
| 327 |
+
# Test ODE methods comparison if available
|
| 328 |
+
if TORCHDIFFEQ_AVAILABLE:
|
| 329 |
+
print("\n🔬 Comparing ODE solving methods...")
|
| 330 |
+
comparison_results = generator.compare_ode_methods(num_samples=10, cfg_scale=7.5)
|
| 331 |
+
|
| 332 |
+
# Use best method for generation
|
| 333 |
+
best_method = 'dopri5' # Recommended method
|
| 334 |
+
print(f"\n🚀 Using {best_method} for main generation...")
|
| 335 |
+
else:
|
| 336 |
+
best_method = 'euler'
|
| 337 |
+
print("\n⚠️ Using fallback Euler integration...")
|
| 338 |
+
|
| 339 |
+
# Generate samples with different CFG scales using improved ODE solving
|
| 340 |
+
print("\n1. Generating with CFG scale 0.0 (no conditioning)...")
|
| 341 |
+
samples_no_cfg = generator.generate_amps(num_samples=20, num_steps=25, cfg_scale=0.0, ode_method=best_method)
|
| 342 |
+
|
| 343 |
+
print("\n2. Generating with CFG scale 3.0 (weak conditioning)...")
|
| 344 |
+
samples_weak_cfg = generator.generate_amps(num_samples=20, num_steps=25, cfg_scale=3.0, ode_method=best_method)
|
| 345 |
+
|
| 346 |
+
print("\n3. Generating with CFG scale 7.5 (strong conditioning)...")
|
| 347 |
+
samples_strong_cfg = generator.generate_amps(num_samples=20, num_steps=25, cfg_scale=7.5, ode_method=best_method)
|
| 348 |
+
|
| 349 |
+
print("\n4. Generating with CFG scale 15.0 (very strong conditioning)...")
|
| 350 |
+
samples_very_strong_cfg = generator.generate_amps(num_samples=20, num_steps=25, cfg_scale=15.0, ode_method=best_method)
|
| 351 |
+
|
| 352 |
+
# Create output directory if it doesn't exist
|
| 353 |
+
output_dir = '/data2/edwardsun/generated_samples'
|
| 354 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 355 |
+
|
| 356 |
+
# Get today's date for filename
|
| 357 |
+
today = datetime.now().strftime('%Y%m%d')
|
| 358 |
+
|
| 359 |
+
# Save generated samples with date
|
| 360 |
+
torch.save(samples_no_cfg, os.path.join(output_dir, f'generated_amps_best_model_no_cfg_{today}.pt'))
|
| 361 |
+
torch.save(samples_weak_cfg, os.path.join(output_dir, f'generated_amps_best_model_weak_cfg_{today}.pt'))
|
| 362 |
+
torch.save(samples_strong_cfg, os.path.join(output_dir, f'generated_amps_best_model_strong_cfg_{today}.pt'))
|
| 363 |
+
torch.save(samples_very_strong_cfg, os.path.join(output_dir, f'generated_amps_best_model_very_strong_cfg_{today}.pt'))
|
| 364 |
+
|
| 365 |
+
print("\n✓ Generation complete!")
|
| 366 |
+
print(f"Generated samples saved (Date: {today}):")
|
| 367 |
+
print(f" - generated_amps_best_model_no_cfg_{today}.pt (no conditioning)")
|
| 368 |
+
print(f" - generated_amps_best_model_weak_cfg_{today}.pt (weak CFG)")
|
| 369 |
+
print(f" - generated_amps_best_model_strong_cfg_{today}.pt (strong CFG)")
|
| 370 |
+
print(f" - generated_amps_best_model_very_strong_cfg_{today}.pt (very strong CFG)")
|
| 371 |
+
|
| 372 |
+
print("\nCFG Analysis:")
|
| 373 |
+
print(" - CFG scale 0.0: No conditioning, generates diverse sequences")
|
| 374 |
+
print(" - CFG scale 3.0: Weak AMP conditioning")
|
| 375 |
+
print(" - CFG scale 7.5: Strong AMP conditioning (recommended)")
|
| 376 |
+
print(" - CFG scale 15.0: Very strong AMP conditioning (may be too restrictive)")
|
| 377 |
+
|
| 378 |
+
print("\nNext steps:")
|
| 379 |
+
print("1. Decode embeddings back to sequences using ESM-2 decoder")
|
| 380 |
+
print("2. Evaluate with ProtFlow metrics (FPD, MMD, ESM-2 perplexity)")
|
| 381 |
+
print("3. Compare sequences generated with different CFG scales")
|
| 382 |
+
print("4. Evaluate AMP properties (antimicrobial activity, toxicity)")
|
| 383 |
+
if TORCHDIFFEQ_AVAILABLE:
|
| 384 |
+
print(f"5. ✓ Enhanced generation with {best_method} ODE solver")
|
| 385 |
+
else:
|
| 386 |
+
print("5. Install torchdiffeq for improved ODE solving: pip install torchdiffeq")
|
| 387 |
+
|
| 388 |
+
if __name__ == "__main__":
|
| 389 |
+
main()
|