esunAI commited on
Commit
016900a
·
verified ·
1 Parent(s): 97eb7cb

Add final_sequence_decoder.py

Browse files
Files changed (1) hide show
  1. src/final_sequence_decoder.py +263 -0
src/final_sequence_decoder.py ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ import esm
5
+ from tqdm import tqdm
6
+ import os
7
+ from datetime import datetime
8
+
9
+ CANONICAL_AAS = list("ACDEFGHIKLMNPQRSTVWY")
10
+
11
+ class EmbeddingToSequenceConverter:
12
+ """
13
+ Decode contextual ESM2 hidden states to amino-acid sequences via the model's LM head.
14
+ Accepts [L, 1280] or [B, L, 1280] tensors (L≈50 in your pipeline).
15
+ """
16
+
17
+ def __init__(self, device="cuda"):
18
+ self.device = torch.device(device if torch.cuda.is_available() else "cpu")
19
+ print("Loading ESM model for sequence decoding...")
20
+ self.model, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
21
+ self.model.eval().to(self.device)
22
+ self.aa_list = CANONICAL_AAS
23
+ self.aa_token_ids = torch.tensor(
24
+ [self.alphabet.get_idx(a) for a in self.aa_list],
25
+ device=self.device, dtype=torch.long
26
+ )
27
+ print("✓ ESM model loaded for sequence decoding")
28
+
29
+ @torch.inference_mode()
30
+ def _logits_from_hidden(self, hidden):
31
+ # hidden: [L, D] or [B, L, D]; project exactly as ESM-2 does (LayerNorm → LM head)
32
+ if hidden.dim() == 2:
33
+ hidden = hidden.unsqueeze(0)
34
+ hidden = hidden.to(self.device)
35
+ # match model dtype to avoid dtype mismatches under autocast
36
+ hidden = hidden.to(self.model.lm_head.weight.dtype)
37
+ if hasattr(self.model, "emb_layer_norm_after"):
38
+ hidden = self.model.emb_layer_norm_after(hidden)
39
+ logits_full = self.model.lm_head(hidden) # [B, L, |V|]
40
+ logits_20 = logits_full.index_select(-1, self.aa_token_ids) # [B, L, 20]
41
+ return logits_20
42
+
43
+ @torch.inference_mode()
44
+ def embedding_to_sequence(self, embedding, method="diverse", temperature=0.8, top_p=0.9, top_k=0, seed=None, return_conf=False):
45
+ logits = self._logits_from_hidden(embedding) # [1, L, 20]
46
+ if method in ("nearest", "nearest_neighbor"):
47
+ idx = logits.argmax(-1)[0]
48
+ probs = logits.softmax(-1)[0]
49
+ else:
50
+ if seed is not None:
51
+ torch.manual_seed(seed)
52
+ if temperature and temperature > 0:
53
+ logits = logits / temperature
54
+ probs = logits.softmax(-1)[0] # [L, 20]
55
+ V = probs.size(-1)
56
+ if top_k and top_k < V:
57
+ kth = torch.topk(probs, top_k, dim=-1).values[..., -1:]
58
+ probs = torch.where(probs >= kth, probs, torch.zeros_like(probs))
59
+ probs = probs / probs.sum(-1, keepdim=True).clamp_min(1e-12)
60
+ if top_p and 0 < top_p < 1:
61
+ sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
62
+ cum = sorted_probs.cumsum(-1)
63
+ mask = cum > top_p
64
+ mask[..., 0] = False
65
+ sorted_probs = sorted_probs.masked_fill(mask, 0)
66
+ sorted_probs = sorted_probs / sorted_probs.sum(-1, keepdim=True).clamp_min(1e-12)
67
+ samples = torch.multinomial(sorted_probs, 1).squeeze(-1)
68
+ idx = sorted_idx.gather(-1, samples.unsqueeze(-1)).squeeze(-1)
69
+ else:
70
+ idx = torch.multinomial(probs, 1).squeeze(-1)
71
+ seq = "".join(self.aa_list[i] for i in idx.tolist())
72
+ if return_conf:
73
+ conf = probs.max(-1).values.mean().item() # avg per-pos max prob
74
+ return seq, conf
75
+ return seq
76
+
77
+ @torch.inference_mode()
78
+ def batch_embedding_to_sequences(self, embeddings, method="diverse", temperature=0.8, top_p=0.9, top_k=0, seed=None, return_conf=False, max_tokens=100_000):
79
+ if embeddings.dim() == 2:
80
+ return [self.embedding_to_sequence(embeddings, method, temperature, top_p, top_k, seed, return_conf)]
81
+ B, L, V = embeddings.shape
82
+ if seed is not None:
83
+ torch.manual_seed(seed)
84
+ # Batched logits to avoid OOM
85
+ logits = []
86
+ start = 0
87
+ while start < B:
88
+ chunk_bs = max(1, min(B - start, max_tokens // L))
89
+ logits.append(self._logits_from_hidden(embeddings[start:start+chunk_bs]))
90
+ start += chunk_bs
91
+ logits = torch.cat(logits, dim=0) # [B, L, 20]
92
+ if method in ("nearest", "nearest_neighbor"):
93
+ idx = logits.argmax(-1) # [B, L]
94
+ probs = logits.softmax(-1)
95
+ else:
96
+ if temperature and temperature > 0:
97
+ logits = logits / temperature
98
+ probs = logits.softmax(-1) # [B, L, 20]
99
+ B, L, V = probs.shape
100
+ if top_k and top_k < V:
101
+ kth = torch.topk(probs, top_k, dim=-1).values[..., -1:].expand_as(probs)
102
+ probs = torch.where(probs >= kth, probs, torch.zeros_like(probs))
103
+ probs = probs / probs.sum(-1, keepdim=True).clamp_min(1e-12)
104
+ if top_p and 0 < top_p < 1:
105
+ flat = probs.view(-1, V)
106
+ sorted_probs, sorted_idx = torch.sort(flat, descending=True, dim=-1)
107
+ cum = sorted_probs.cumsum(-1)
108
+ mask = cum > top_p
109
+ mask[:, 0] = False
110
+ sorted_probs = sorted_probs.masked_fill(mask, 0)
111
+ sorted_probs = sorted_probs / sorted_probs.sum(-1, keepdim=True).clamp_min(1e-12)
112
+ samples = torch.multinomial(sorted_probs, 1) # [B*L, 1]
113
+ idx = sorted_idx.gather(-1, samples).view(B, L) # [B, L]
114
+ else:
115
+ idx = torch.multinomial(probs.view(-1, V), 1).view(B, L)
116
+ seqs = ["".join(self.aa_list[i] for i in row.tolist()) for row in idx]
117
+ if return_conf:
118
+ conf = probs.max(-1).values.mean(-1).tolist() # [B]
119
+ return list(zip(seqs, conf))
120
+ return seqs
121
+ def validate_sequence(self, s):
122
+ return all(a in set(self.aa_list) for a in s)
123
+
124
+ def filter_valid_sequences(self, sequences):
125
+ valid = []
126
+ for seq in sequences:
127
+ if self.validate_sequence(seq):
128
+ valid.append(seq)
129
+ else:
130
+ print(f"Warning: Invalid sequence found: {seq}")
131
+ return valid
132
+
133
+ def main():
134
+ """
135
+ Decode all CFG-generated peptide embeddings to sequences and analyze distribution.
136
+ Uses the best trained model (loss: 0.017183, step: 53).
137
+ """
138
+ print("=== CFG-Generated Peptide Sequence Decoder (Best Model) ===")
139
+
140
+ # Initialize converter
141
+ converter = EmbeddingToSequenceConverter()
142
+
143
+ # Get today's date for filename
144
+ today = datetime.now().strftime('%Y%m%d')
145
+
146
+ # Load all CFG-generated embeddings (using best model)
147
+ cfg_files = {
148
+ 'No CFG (0.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_no_cfg_{today}.pt',
149
+ 'Weak CFG (3.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_weak_cfg_{today}.pt',
150
+ 'Strong CFG (7.5)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_strong_cfg_{today}.pt',
151
+ 'Very Strong CFG (15.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_very_strong_cfg_{today}.pt'
152
+ }
153
+
154
+ all_results = {}
155
+
156
+ for cfg_name, file_path in cfg_files.items():
157
+ print(f"\n{'='*50}")
158
+ print(f"Processing {cfg_name}...")
159
+ print(f"Loading: {file_path}")
160
+
161
+ try:
162
+ # Load embeddings
163
+ embeddings = torch.load(file_path, map_location='cpu')
164
+ print(f"✓ Loaded {len(embeddings)} embeddings, shape: {embeddings.shape}")
165
+
166
+ # Decode to sequences using diverse method
167
+ print(f"Decoding sequences...")
168
+ sequences = converter.batch_embedding_to_sequences(embeddings, method='diverse', temperature=0.5)
169
+
170
+ # Filter valid sequences
171
+ valid_sequences = converter.filter_valid_sequences(sequences)
172
+ print(f"✓ Valid sequences: {len(valid_sequences)}/{len(sequences)}")
173
+
174
+ # Store results
175
+ all_results[cfg_name] = {
176
+ 'sequences': valid_sequences,
177
+ 'total': len(sequences),
178
+ 'valid': len(valid_sequences)
179
+ }
180
+
181
+ # Show sample sequences
182
+ print(f"\nSample sequences ({cfg_name}):")
183
+ for i, seq in enumerate(valid_sequences[:5]):
184
+ print(f" {i+1}: {seq}")
185
+
186
+ except Exception as e:
187
+ print(f"❌ Error processing {file_path}: {e}")
188
+ all_results[cfg_name] = {'sequences': [], 'total': 0, 'valid': 0}
189
+
190
+ # Analysis and comparison
191
+ print(f"\n{'='*60}")
192
+ print("CFG ANALYSIS SUMMARY")
193
+ print(f"{'='*60}")
194
+
195
+ for cfg_name, results in all_results.items():
196
+ sequences = results['sequences']
197
+ if sequences:
198
+ # Calculate sequence statistics
199
+ lengths = [len(seq) for seq in sequences]
200
+ avg_length = np.mean(lengths)
201
+ std_length = np.std(lengths)
202
+
203
+ # Calculate amino acid composition
204
+ all_aas = ''.join(sequences)
205
+ aa_counts = {}
206
+ for aa in 'ACDEFGHIKLMNPQRSTVWY':
207
+ aa_counts[aa] = all_aas.count(aa)
208
+
209
+ # Calculate diversity (unique sequences)
210
+ unique_sequences = len(set(sequences))
211
+ diversity_ratio = unique_sequences / len(sequences)
212
+
213
+ print(f"\n{cfg_name}:")
214
+ print(f" Total sequences: {results['total']}")
215
+ print(f" Valid sequences: {results['valid']}")
216
+ print(f" Unique sequences: {unique_sequences}")
217
+ print(f" Diversity ratio: {diversity_ratio:.3f}")
218
+ print(f" Avg length: {avg_length:.1f} ± {std_length:.1f}")
219
+ print(f" Length range: {min(lengths)}-{max(lengths)}")
220
+
221
+ # Show top amino acids
222
+ sorted_aas = sorted(aa_counts.items(), key=lambda x: x[1], reverse=True)
223
+ print(f" Top 5 AAs: {', '.join([f'{aa}({count})' for aa, count in sorted_aas[:5]])}")
224
+
225
+ # Create output directory if it doesn't exist
226
+ output_dir = '/data2/edwardsun/decoded_sequences'
227
+ os.makedirs(output_dir, exist_ok=True)
228
+
229
+ # Save sequences to file with date
230
+ output_file = os.path.join(output_dir, f"decoded_sequences_{cfg_name.lower().replace(' ', '_').replace('(', '').replace(')', '').replace('.', '')}_{today}.txt")
231
+ with open(output_file, 'w') as f:
232
+ f.write(f"# Decoded sequences from {cfg_name}\n")
233
+ f.write(f"# Total: {results['total']}, Valid: {results['valid']}, Unique: {unique_sequences}\n")
234
+ f.write(f"# Generated from best model (loss: 0.017183, step: 53)\n\n")
235
+ for i, seq in enumerate(sequences):
236
+ f.write(f"seq_{i+1:03d}\t{seq}\n")
237
+ print(f" ✓ Saved to: {output_file}")
238
+
239
+ # Overall comparison
240
+ print(f"\n{'='*60}")
241
+ print("OVERALL COMPARISON")
242
+ print(f"{'='*60}")
243
+
244
+ cfg_names = list(all_results.keys())
245
+ valid_counts = [all_results[name]['valid'] for name in cfg_names]
246
+ unique_counts = [len(set(all_results[name]['sequences'])) for name in cfg_names]
247
+
248
+ print(f"Valid sequences: {dict(zip(cfg_names, valid_counts))}")
249
+ print(f"Unique sequences: {dict(zip(cfg_names, unique_counts))}")
250
+
251
+ # Find most diverse and most similar
252
+ if all(valid_counts):
253
+ diversity_ratios = [unique_counts[i]/valid_counts[i] for i in range(len(valid_counts))]
254
+ most_diverse = cfg_names[diversity_ratios.index(max(diversity_ratios))]
255
+ least_diverse = cfg_names[diversity_ratios.index(min(diversity_ratios))]
256
+
257
+ print(f"\nMost diverse: {most_diverse} (ratio: {max(diversity_ratios):.3f})")
258
+ print(f"Least diverse: {least_diverse} (ratio: {min(diversity_ratios):.3f})")
259
+
260
+ print(f"\n✓ Decoding complete! Check the output files for detailed sequences.")
261
+
262
+ if __name__ == "__main__":
263
+ main()