|
--- |
|
tags: |
|
- espnet |
|
- audio |
|
- speaker-recognition |
|
language: multilingual |
|
datasets: |
|
- voxceleb |
|
license: cc-by-4.0 |
|
--- |
|
|
|
## ESPnet2 SPK model |
|
|
|
### `espnet/voxcelebs12_rawnet3` |
|
|
|
This model was trained by Jungjee using voxceleb recipe in [espnet](https://github.com/espnet/espnet/). |
|
|
|
### Demo: How to use in ESPnet2 |
|
|
|
Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) |
|
if you haven't done that already. |
|
|
|
```bash |
|
cd espnet |
|
git checkout 0c489a83607efb8e21331a9f01df21aac58c2a88 |
|
pip install -e . |
|
cd egs2/voxceleb/spk1 |
|
./run.sh --skip_data_prep false --skip_train true --download_model espnet/voxcelebs12_rawnet3 |
|
``` |
|
|
|
<!-- Generated by scripts/utils/show_spk_result.py --> |
|
# RESULTS |
|
## Environments |
|
date: 2023-11-21 12:43:27.293418 |
|
|
|
- python version: \`3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0]\` |
|
- espnet version: \`espnet 202310\` |
|
- pytorch version: \`pytorch 2.0.1\` |
|
|
|
| | Mean | Std | |
|
|---|---|---| |
|
| Target | -0.8015 | 0.1383 | |
|
| Non-target | 0.0836 | 0.0836 | |
|
|
|
| | EER(\%) | minDCF | |
|
|---|---|---| |
|
| | 0.739 | 0.05818 | |
|
|
|
## SPK config |
|
|
|
<details><summary>expand</summary> |
|
|
|
``` |
|
config: conf/tuning/train_rawnet3_best_trnVox12_emb192_amp_subcentertopk.yaml |
|
print_config: false |
|
log_level: INFO |
|
drop_last_iter: true |
|
dry_run: false |
|
iterator_type: category |
|
valid_iterator_type: sequence |
|
output_dir: exp/spk_train_rawnet3_best_trnVox12_emb192_amp_subcentertopk_raw_sp |
|
ngpu: 1 |
|
seed: 0 |
|
num_workers: 6 |
|
num_att_plot: 0 |
|
dist_backend: nccl |
|
dist_init_method: env:// |
|
dist_world_size: 4 |
|
dist_rank: 0 |
|
local_rank: 0 |
|
dist_master_addr: localhost |
|
dist_master_port: 56599 |
|
dist_launcher: null |
|
multiprocessing_distributed: true |
|
unused_parameters: false |
|
sharded_ddp: false |
|
cudnn_enabled: true |
|
cudnn_benchmark: true |
|
cudnn_deterministic: false |
|
collect_stats: false |
|
write_collected_feats: false |
|
max_epoch: 40 |
|
patience: null |
|
val_scheduler_criterion: |
|
- valid |
|
- loss |
|
early_stopping_criterion: |
|
- valid |
|
- loss |
|
- min |
|
best_model_criterion: |
|
- - valid |
|
- eer |
|
- min |
|
keep_nbest_models: 3 |
|
nbest_averaging_interval: 0 |
|
grad_clip: 9999 |
|
grad_clip_type: 2.0 |
|
grad_noise: false |
|
accum_grad: 1 |
|
no_forward_run: false |
|
resume: true |
|
train_dtype: float32 |
|
use_amp: true |
|
log_interval: 100 |
|
use_matplotlib: true |
|
use_tensorboard: true |
|
create_graph_in_tensorboard: false |
|
use_wandb: false |
|
wandb_project: null |
|
wandb_id: null |
|
wandb_entity: null |
|
wandb_name: null |
|
wandb_model_log_interval: -1 |
|
detect_anomaly: false |
|
pretrain_path: null |
|
init_param: [] |
|
ignore_init_mismatch: false |
|
freeze_param: [] |
|
num_iters_per_epoch: null |
|
batch_size: 512 |
|
valid_batch_size: 40 |
|
batch_bins: 1000000 |
|
valid_batch_bins: null |
|
train_shape_file: |
|
- exp/spk_stats_16k_sp/train/speech_shape |
|
valid_shape_file: |
|
- exp/spk_stats_16k_sp/valid/speech_shape |
|
batch_type: folded |
|
valid_batch_type: null |
|
fold_length: |
|
- 120000 |
|
sort_in_batch: descending |
|
shuffle_within_batch: false |
|
sort_batch: descending |
|
multiple_iterator: false |
|
chunk_length: 500 |
|
chunk_shift_ratio: 0.5 |
|
num_cache_chunks: 1024 |
|
chunk_excluded_key_prefixes: [] |
|
train_data_path_and_name_and_type: |
|
- - dump/raw/voxceleb12_devs_sp/wav.scp |
|
- speech |
|
- sound |
|
- - dump/raw/voxceleb12_devs_sp/utt2spk |
|
- spk_labels |
|
- text |
|
valid_data_path_and_name_and_type: |
|
- - dump/raw/voxceleb1_test/trial.scp |
|
- speech |
|
- sound |
|
- - dump/raw/voxceleb1_test/trial2.scp |
|
- speech2 |
|
- sound |
|
- - dump/raw/voxceleb1_test/trial_label |
|
- spk_labels |
|
- text |
|
allow_variable_data_keys: false |
|
max_cache_size: 0.0 |
|
max_cache_fd: 32 |
|
valid_max_cache_size: null |
|
exclude_weight_decay: false |
|
exclude_weight_decay_conf: {} |
|
optim: adam |
|
optim_conf: |
|
lr: 0.001 |
|
weight_decay: 5.0e-05 |
|
amsgrad: false |
|
scheduler: cosineannealingwarmuprestarts |
|
scheduler_conf: |
|
first_cycle_steps: 71280 |
|
cycle_mult: 1.0 |
|
max_lr: 0.001 |
|
min_lr: 5.0e-06 |
|
warmup_steps: 1000 |
|
gamma: 0.75 |
|
init: null |
|
use_preprocessor: true |
|
input_size: null |
|
target_duration: 3.0 |
|
spk2utt: dump/raw/voxceleb12_devs_sp/spk2utt |
|
spk_num: 21615 |
|
sample_rate: 16000 |
|
num_eval: 10 |
|
rir_scp: '' |
|
model_conf: |
|
extract_feats_in_collect_stats: false |
|
frontend: asteroid_frontend |
|
frontend_conf: |
|
sinc_stride: 16 |
|
sinc_kernel_size: 251 |
|
sinc_filters: 256 |
|
preemph_coef: 0.97 |
|
log_term: 1.0e-06 |
|
specaug: null |
|
specaug_conf: {} |
|
normalize: null |
|
normalize_conf: {} |
|
encoder: rawnet3 |
|
encoder_conf: |
|
model_scale: 8 |
|
ndim: 1024 |
|
output_size: 1536 |
|
pooling: chn_attn_stat |
|
pooling_conf: {} |
|
projector: rawnet3 |
|
projector_conf: |
|
output_size: 192 |
|
preprocessor: spk |
|
preprocessor_conf: |
|
target_duration: 3.0 |
|
sample_rate: 16000 |
|
num_eval: 5 |
|
noise_apply_prob: 0.5 |
|
noise_info: |
|
- - 1.0 |
|
- dump/raw/musan_speech.scp |
|
- - 4 |
|
- 7 |
|
- - 13 |
|
- 20 |
|
- - 1.0 |
|
- dump/raw/musan_noise.scp |
|
- - 1 |
|
- 1 |
|
- - 0 |
|
- 15 |
|
- - 1.0 |
|
- dump/raw/musan_music.scp |
|
- - 1 |
|
- 1 |
|
- - 5 |
|
- 15 |
|
rir_apply_prob: 0.5 |
|
rir_scp: dump/raw/rirs.scp |
|
loss: aamsoftmax_sc_topk |
|
loss_conf: |
|
margin: 0.3 |
|
scale: 30 |
|
K: 3 |
|
mp: 0.06 |
|
k_top: 5 |
|
required: |
|
- output_dir |
|
version: '202308' |
|
distributed: true |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
### Citing ESPnet |
|
|
|
```BibTex |
|
@inproceedings{watanabe2018espnet, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
title={{ESPnet}: End-to-End Speech Processing Toolkit}, |
|
year={2018}, |
|
booktitle={Proceedings of Interspeech}, |
|
pages={2207--2211}, |
|
doi={10.21437/Interspeech.2018-1456}, |
|
url={http://dx.doi.org/10.21437/Interspeech.2018-1456} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
``` |
|
|
|
or arXiv: |
|
|
|
```bibtex |
|
@misc{watanabe2018espnet, |
|
title={ESPnet: End-to-End Speech Processing Toolkit}, |
|
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, |
|
year={2018}, |
|
eprint={1804.00015}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|