eslamxm's picture
update model card README.md
fe05560
metadata
tags:
  - summarization
  - generated_from_trainer
datasets:
  - wiki_lingua
model-index:
  - name: mT5_multilingual_XLSum-finetuned-ar-wikilingua
    results: []

mT5_multilingual_XLSum-finetuned-ar-wikilingua

This model is a fine-tuned version of csebuetnlp/mT5_multilingual_XLSum on the wiki_lingua dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6903
  • Rouge-1: 24.47
  • Rouge-2: 7.69
  • Rouge-l: 20.04
  • Gen Len: 39.64
  • Bertscore: 72.63

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 8
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Rouge-1 Rouge-2 Rouge-l Gen Len Bertscore
4.4406 1.0 5111 3.9582 22.35 6.84 18.39 34.78 71.94
4.0158 2.0 10222 3.8316 22.87 7.24 18.92 34.7 71.99
3.8626 3.0 15333 3.7695 23.65 7.5 19.6 35.53 72.31
3.7626 4.0 20444 3.7313 24.01 7.59 19.68 38.16 72.41
3.6934 5.0 25555 3.7118 24.37 7.77 19.93 39.36 72.47
3.6421 6.0 30666 3.7016 24.48 7.8 20.07 38.58 72.58
3.6073 7.0 35777 3.6907 24.31 7.83 20.13 38.07 72.5
3.5843 8.0 40888 3.6903 24.55 7.88 20.2 38.33 72.6

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1