eskayML's picture
eskayML/interview_classifier
c9d7764 verified
|
raw
history blame
2.56 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: interview_classifier
    results: []

interview_classifier

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1239
  • Accuracy: 0.9603

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 76 2.1645 0.1921
No log 2.0 152 1.8505 0.4238
No log 3.0 228 1.4303 0.6887
No log 4.0 304 1.0770 0.7682
No log 5.0 380 0.8012 0.8477
No log 6.0 456 0.6188 0.8609
1.4872 7.0 532 0.4291 0.9205
1.4872 8.0 608 0.3219 0.9338
1.4872 9.0 684 0.2561 0.9536
1.4872 10.0 760 0.2071 0.9536
1.4872 11.0 836 0.1758 0.9603
1.4872 12.0 912 0.1486 0.9603
1.4872 13.0 988 0.1443 0.9603
0.3011 14.0 1064 0.1384 0.9603
0.3011 15.0 1140 0.1377 0.9603
0.3011 16.0 1216 0.1347 0.9603
0.3011 17.0 1292 0.1267 0.9603
0.3011 18.0 1368 0.1223 0.9603
0.3011 19.0 1444 0.1256 0.9603
0.1494 20.0 1520 0.1239 0.9603

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1