whisper-aed-tedlium / run_speech_recognition_whisper.py
sanchit-gandhi's picture
Add scripts and weights
01099af
#!/usr/bin/env python
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning OpenAI Whisper models for speech recognition.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
# flake8: noqa: E501
import logging
import os
import whisper
import sys
from dataclasses import dataclass, field
import tempfile
from typing import Optional, Dict, Union, List
import numpy as np
import torch
import datasets
from datasets import DatasetDict, load_dataset
import transformers
from torch import nn
from transformers import (
HfArgumentParser,
Seq2SeqTrainingArguments,
set_seed,
Seq2SeqTrainer,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
import wandb
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/tokenizer we are going to fine-tune from.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={"help": "Path to pretrained model or model identifier from OpenAI Whisper NGC."}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co or OpenAI Whisper NGC."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
manifest_path: str = field(
default="data",
metadata={
"help": "Manifest path."
},
)
tokenizer_path: str = field(
default="tokenizers",
metadata={
"help": "Tokenizer path."
},
)
freeze_encoder: bool = field(
default=False,
metadata={"help": "Freeze the acoustic encoder of the model. Recommend when fine-tuning on small datasets."}
)
num_beams: int = field(
default=1,
metadata={"help": "Number of beams for evaluation."},
)
length_penalty: float = field(
default=1.0,
metadata={"help": "Length penalty for evaluation."},
)
use_adam8bit: bool = field(
default=False,
metadata={"help": "Whether to use bitsandbytes 8bit AdamW optimiser."}
)
dropout_rate: float = field(
default=0.0,
metadata={"help": "The dropout ratio for all dropout layers (default=0)."}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
dataset_cache_dir: Optional[str] = field(
default=None, metadata={"help": "Path to cache directory for saving and loading datasets"}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of test examples to this "
"value if set."
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
text_column_name: str = field(
default="text",
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
max_duration_in_seconds: float = field(
default=20.0,
metadata={
"help": "Truncate training audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
},
)
min_duration_in_seconds: float = field(
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
)
max_eval_duration_in_seconds: float = field(
default=None,
metadata={
"help": "Truncate eval/test audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
min_target_length: Optional[int] = field(
default=0,
metadata={
"help": "The minimum total sequence length for target text after tokenization. Sequences shorter "
"than this will be filtered."
},
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": "Whether to only do data preprocessing and skip training. "
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
"so that the cached datasets can consequently be loaded in distributed training"
},
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="validation",
metadata={
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
},
)
test_split_name: str = field(
default="test",
metadata={"help": "The name of the test data set split to use (via the datasets library). Defaults to 'test'"},
)
wandb_project: str = field(
default="speech-recognition-whisper",
metadata={"help": "The name of the wandb project."},
)
def write_wandb_pred(pred_str, label_str, prefix="eval"):
# convert str data to a wandb compatible format
str_data = [[label_str[i], pred_str[i]] for i in range(len(pred_str))]
# we'll log all predictions for the last epoch
wandb.log(
{
f"{prefix}/predictions": wandb.Table(
columns=["label_str", "pred_str"], data=str_data
)
},
)
def to_pad_to_mel(array):
"""Static function which:
1. Pads/trims a list of audio arrays to a max length of 30s
2. Computes log-mel filter coefficients from padded/trimmed audio sequences
Inputs:
array: list of audio arrays
Returns:
input_ids: torch.tensor of log-mel filter bank coefficients
"""
padded_input = whisper.pad_or_trim(np.asarray(array, dtype=np.float32))
input_ids = whisper.log_mel_spectrogram(padded_input)
return input_ids
def to_mel_to_pad(array):
"""Static function which:
1. Computes log-mel filter coefficients from padded/trimmed audio sequences
2. Pads/trims a list of audio arrays to a max length of 30s
Inputs:
array: list of audio arrays
Returns:
input_ids: torch.tensor of log-mel filter bank coefficients
"""
mels = whisper.log_mel_spectrogram(np.asarray(array, dtype=np.float32))
input_ids = whisper.pad_or_trim(mels, 3000)
return input_ids
@dataclass
class WhisperDataCollatorWithPadding:
"""
Data collator that dynamically pads the audio inputs received. An EOS token is appended to the labels sequences.
They are then dynamically padded to max length.
Args:
eos_token_id (`int`)
The end-of-sentence token for the Whisper tokenizer. Ensure to set for sequences to terminate before
generation max length.
"""
eos_token_id: int
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
"""
Since Whisper models don't have a HF processor defined (feature extractor + tokenizer), we'll pad by hand...
"""
# split inputs and labels since they have to be of different lengths
# and need different padding methods
input_ids = [feature["input_ids"] for feature in features]
labels = [feature["labels"] for feature in features]
# first, pad the audio inputs to max_len
input_ids = torch.concat([to_pad_to_mel(input_val)[None, :] for input_val in input_ids])
# next, append the eos token to our sequence of labels
labels = [lab + [self.eos_token_id] for lab in labels]
# finally, pad the target labels to max_len
label_lengths = [len(lab) for lab in labels]
max_label_len = max(label_lengths)
labels = [np.pad(lab, (0, max_label_len - lab_len), 'constant', constant_values=-100) for lab, lab_len in zip(labels, label_lengths)]
batch = {"labels": labels}
batch = {k: torch.tensor(np.array(v), requires_grad=False) for k, v in batch.items()}
batch["input_ids"] = input_ids
return batch
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Set wandb project ID before instantiating the Trainer
os.environ["WANDB_PROJECT"] = data_args.wandb_project
report_to_wandb = "wandb" in training_args.report_to
sample_rate = 16_000
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# load the model
if os.path.isfile(model_args.model_name_or_path):
checkpoint = torch.load(model_args.model_name_or_path)
need_to_rewrite_checkpoint = any(k.startswith("decoder.blocks") and ".mlp.3" in k for k in checkpoint.keys())
if need_to_rewrite_checkpoint:
new_checkpoint = {}
for k, v in checkpoint.items():
if k.startswith("decoder.blocks") and "mlp" in k.split("."):
if int(k.split(".mlp.")[-1].split(".")[0]) in [2, 4]:
continue
elif int(k.split(".mlp.")[-1].split(".")[0]) == 3:
k = k.replace(".mlp.3", ".mlp.2")
new_checkpoint[k] = v
with tempfile.TemporaryDirectory() as tmp:
file = os.path.join(tmp, "model.pt")
torch.save(new_checkpoint, file)
model = whisper.Whisper.load_trained(file)
else:
model = whisper.Whisper.load_trained(model_args.model_name_or_path)
del checkpoint
else:
model = whisper.load_model(model_args.model_name_or_path, dropout_rate=model_args.dropout_rate)
if training_args.do_train:
# set the dropout for the MLP layers -> we do this here as the MLP layers are written as a 'sequential'
# so changing the modelling code gives mis-matches in the state-dict
if not model_args.freeze_encoder:
# only apply dropout when training the encoder
for block_idx in range(len(model.encoder.blocks)):
mlp_layer = model.encoder.blocks[block_idx].mlp
# going very verbose to explain what we're doing here!
fc1 = mlp_layer[0]
act_fn = mlp_layer[1]
dropout = nn.Dropout(p=model_args.dropout_rate)
fc2 = mlp_layer[2]
model.encoder.blocks[block_idx].mlp = nn.Sequential(fc1, act_fn, dropout, fc2, dropout)
for block_idx in range(len(model.decoder.blocks)):
mlp_layer = model.decoder.blocks[block_idx].mlp
fc1 = mlp_layer[0]
act_fn = mlp_layer[1]
dropout_1 = nn.Dropout(p=model_args.dropout_rate)
fc2 = mlp_layer[2]
dropout_2 = nn.Dropout(p=model_args.dropout_rate)
model.decoder.blocks[block_idx].mlp = nn.Sequential(fc1, act_fn, dropout_1, fc2, dropout_2)
for block_idx in range(len(model.decoder.blocks)):
mlp_layer = model.decoder.blocks[block_idx].mlp
fc1 = mlp_layer[0]
act_fn = mlp_layer[1]
dropout1 = nn.Dropout(p=model_args.dropout_rate)
fc2 = mlp_layer[2]
dropout2 = nn.Dropout(p=model_args.dropout_rate)
model.decoder.blocks[block_idx].mlp = nn.Sequential(fc1, act_fn, dropout1, fc2, dropout2)
# load the tokenizer
whisper_tok = whisper.tokenizer.get_tokenizer(False, task="transcribe", language="en")
tokenizer = whisper_tok.tokenizer
tokenizer.pad_token = tokenizer.eos_token
# 4. Load dataset
raw_datasets = DatasetDict()
if training_args.do_train:
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
cache_dir=data_args.dataset_cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if training_args.do_eval:
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
cache_dir=data_args.dataset_cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if training_args.do_predict:
test_split = data_args.test_split_name.split("+")
for split in test_split:
raw_datasets[split] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=split,
cache_dir=data_args.dataset_cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if not training_args.do_train and not training_args.do_eval and not training_args.do_predict:
raise ValueError(
"Cannot not train, not do evaluation and not do prediction. At least one of "
"training, evaluation or prediction has to be done."
)
# if not training, there is no need to run multiple epochs
if not training_args.do_train:
training_args.num_train_epochs = 1
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
raise ValueError(
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--audio_column_name` to the correct audio column - one of "
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
)
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
raise ValueError(
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--text_column_name` to the correct text column - one of "
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
)
# 6. Resample speech dataset ALWAYS
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=sample_rate)
)
# 7. Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
max_input_length = int(data_args.max_duration_in_seconds * sample_rate)
min_input_length = min(int(data_args.min_duration_in_seconds * sample_rate), 1)
max_eval_input_length = int(data_args.max_eval_duration_in_seconds * sample_rate) if data_args.max_eval_duration_in_seconds else None
max_target_length = data_args.max_target_length
min_target_length = data_args.min_target_length
audio_column_name = data_args.audio_column_name
num_workers = data_args.preprocessing_num_workers
text_column_name = data_args.text_column_name
if training_args.do_train and data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
if training_args.do_eval and data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
if training_args.do_predict and data_args.max_predict_samples is not None:
for split in test_split:
raw_datasets[split] = raw_datasets[split].select(range(data_args.max_predict_samples))
def prepare_dataset(batch):
# pre-process audio
sample = batch[audio_column_name]
# For training Whisper we perform the audio preprocessing in the WhisperDataCollator
# => we only need to supply it with the raw audio values
batch["input_ids"] = sample["array"]
batch["input_lengths"] = len(batch["input_ids"])
input_str = batch[text_column_name]
batch["labels"] = tokenizer(input_str).input_ids
return batch
vectorized_datasets = raw_datasets.map(
prepare_dataset,
remove_columns=next(iter(raw_datasets.values())).column_names,
num_proc=num_workers,
desc="preprocess train dataset",
)
# filter training data with inputs longer than max_input_length
def is_audio_in_length_range(input_length):
return min_input_length < input_length < max_input_length
if training_args.do_train:
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=["input_lengths"],
)
if max_eval_input_length is not None:
# filter training data with inputs longer than max_input_length
def is_eval_audio_in_length_range(input_length):
return min_input_length < input_length < max_eval_input_length
if training_args.do_eval:
vectorized_datasets["eval"] = vectorized_datasets["eval"].filter(
is_eval_audio_in_length_range,
num_proc=num_workers,
input_columns=["input_lengths"],
)
if training_args.do_predict:
for split in test_split:
vectorized_datasets[split] = vectorized_datasets[split].filter(
is_eval_audio_in_length_range,
num_proc=num_workers,
input_columns=["input_lengths"],
)
# filter training data with targets shorter than min_target_length or longer than max_target_length
def is_labels_in_length_range(labels):
return min_target_length < len(labels) < max_target_length
if training_args.do_train:
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
is_labels_in_length_range,
num_proc=num_workers,
input_columns=["labels"],
)
# for large datasets it is advised to run the preprocessing on a
# single machine first with `args.preprocessing_only` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step `args.preprocessing_only` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only:
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
return
if model_args.freeze_encoder:
model.freeze_encoder()
logging.info("Model encoder has been frozen")
# 8. Load Metric
metric_wer = datasets.load_metric("wer")
metric_cer = datasets.load_metric("cer")
def compute_metrics(pred):
pred_ids = pred.predictions
pred.label_ids[pred.label_ids == -100] = tokenizer.eos_token_id
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
pred_str = [x.lstrip().strip() for x in pred_str]
# we do not want to group tokens when computing the metrics
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
wer = metric_wer.compute(predictions=pred_str, references=label_str)
cer = metric_cer.compute(predictions=pred_str, references=label_str)
return {"wer": wer, "cer": cer}
def compute_metrics_and_predictions(pred):
pred_ids = pred.predictions
pred.label_ids[pred.label_ids == -100] = tokenizer.eos_token_id
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
pred_str = [x.lstrip().strip() for x in pred_str]
# we do not want to group tokens when computing the metrics
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
wer = metric_wer.compute(predictions=pred_str, references=label_str)
cer = metric_cer.compute(predictions=pred_str, references=label_str)
return {"wer": wer, "cer": cer, "pred_str": pred_str, "label_str": label_str}
class WhisperTrainer(Seq2SeqTrainer):
def _save(self, output_dir: Optional[str] = None, state_dict=None):
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
self.model.save_to(save_path=os.path.join(output_dir, model_args.model_name_or_path + ".whisper"))
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
# Define data collator
whisper_data_collator = WhisperDataCollatorWithPadding(eos_token_id=tokenizer.eos_token_id)
# make sure model uses 50257 as BOS
bos = tokenizer("<|startoftranscript|>").input_ids[0]
model.config.decoder_start_token_id = bos
# Initialize Trainer
trainer = WhisperTrainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=vectorized_datasets['train'] if training_args.do_train else None,
eval_dataset=vectorized_datasets['eval'] if training_args.do_eval else None,
data_collator=whisper_data_collator,
)
# 8. Finally, we can start training
# Training
if training_args.do_train:
# use last checkpoint if exist
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(vectorized_datasets["train"])
)
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Change decoding strategy for final eval/predict
# if training_args.do_eval or training_args.do_predict:
# trainer.model.num_beams = 2
trainer.compute_metrics = compute_metrics_and_predictions
results = {}
if training_args.do_eval:
if not training_args.do_train and report_to_wandb:
# manually init wandb
wandb.init(project=data_args.wandb_project, name=training_args.run_name)
# Have to run this as a predict step, otherwise trainer will try to log the pred/label strings to wandb
eval_results = trainer.predict(vectorized_datasets["eval"], metric_key_prefix="eval", num_beams=model_args.num_beams, length_penalty=model_args.length_penalty)
metrics = eval_results.metrics
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
)
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
pred_str = metrics.pop("eval_pred_str", None)
label_str = metrics.pop("eval_label_str", None)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if report_to_wandb:
metrics = {os.path.join("eval", k[len("eval") + 1:]): v for k, v in metrics.items()}
wandb.log(metrics)
write_wandb_pred(pred_str, label_str, prefix="eval")
if training_args.do_predict:
if not training_args.do_train and not training_args.do_eval and report_to_wandb:
# manually init wandb
wandb.init(project=data_args.wandb_project, name=training_args.run_name)
for split in test_split:
predict_results = trainer.predict(
vectorized_datasets[split], metric_key_prefix=split, num_beams=model_args.num_beams, length_penalty=model_args.length_penalty)
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(vectorized_datasets[split])
)
metrics[f"{split}_samples"] = min(max_predict_samples, len(vectorized_datasets[split]))
pred_str = metrics.pop(f"{split}_pred_str", None)
label_str = metrics.pop(f"{split}_label_str", None)
trainer.log_metrics(split, metrics)
trainer.save_metrics(split, metrics)
if report_to_wandb:
metrics = {os.path.join(split, k[len(split)+1:]): v for k, v in metrics.items()}
wandb.log(metrics)
write_wandb_pred(pred_str, label_str, prefix=split)
# Write model card and (optionally) push to hub
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "speech-recognition",
"tags": ["automatic-speech-recognition", data_args.dataset_name],
"dataset_args": (
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
f" {data_args.eval_split_name}"
),
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
}
if "common_voice" in data_args.dataset_name:
kwargs["language"] = config_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
return results
if __name__ == "__main__":
main()