|
--- |
|
base_model: yhavinga/ul2-large-dutch |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: ul2-large-dutch-finetuned-oba-book-search |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ul2-large-dutch-finetuned-oba-book-search |
|
|
|
This model is a fine-tuned version of [yhavinga/ul2-large-dutch](https://huggingface.co/yhavinga/ul2-large-dutch) on a sample dataset from the public library of Amsterdam (OBA). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.4042 |
|
- Top-5-accuracy: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Top-5-accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:| |
|
| 8.2793 | 0.1729 | 200 | 5.9519 | 0.0 | |
|
| 8.1572 | 0.3457 | 400 | 5.9147 | 0.0 | |
|
| 8.1924 | 0.5186 | 600 | 5.8604 | 0.0 | |
|
| 8.021 | 0.6914 | 800 | 5.8270 | 0.0 | |
|
| 7.9558 | 0.8643 | 1000 | 5.7974 | 0.0 | |
|
| 7.9786 | 1.0372 | 1200 | 5.7586 | 0.0 | |
|
| 7.9113 | 1.2100 | 1400 | 5.7306 | 0.0 | |
|
| 8.0483 | 1.3829 | 1600 | 5.7506 | 0.0 | |
|
| 7.8481 | 1.5557 | 1800 | 5.7116 | 0.0 | |
|
| 7.9376 | 1.7286 | 2000 | 5.6599 | 0.0 | |
|
| 7.7537 | 1.9015 | 2200 | 5.6289 | 0.0 | |
|
| 7.7101 | 2.0743 | 2400 | 5.5863 | 0.0 | |
|
| 7.653 | 2.2472 | 2600 | 5.5719 | 0.0 | |
|
| 7.7515 | 2.4201 | 2800 | 5.5510 | 0.0 | |
|
| 7.6844 | 2.5929 | 3000 | 5.5245 | 0.0 | |
|
| 7.7322 | 2.7658 | 3200 | 5.5087 | 0.0 | |
|
| 7.7169 | 2.9386 | 3400 | 5.5065 | 0.0 | |
|
| 7.6177 | 3.1115 | 3600 | 5.4846 | 0.0 | |
|
| 7.6558 | 3.2844 | 3800 | 5.4712 | 0.0 | |
|
| 7.6453 | 3.4572 | 4000 | 5.4564 | 0.0 | |
|
| 7.5664 | 3.6301 | 4200 | 5.4431 | 0.0 | |
|
| 7.5475 | 3.8029 | 4400 | 5.4432 | 0.0 | |
|
| 7.5741 | 3.9758 | 4600 | 5.4393 | 0.0 | |
|
| 7.5523 | 4.1487 | 4800 | 5.4268 | 0.0 | |
|
| 7.6833 | 4.3215 | 5000 | 5.4243 | 0.0 | |
|
| 7.6817 | 4.4944 | 5200 | 5.4098 | 0.0 | |
|
| 7.544 | 4.6672 | 5400 | 5.4070 | 0.0 | |
|
| 7.6062 | 4.8401 | 5600 | 5.4033 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |