enoriega's picture
update model card README.md
6e8b55f
|
raw
history blame
2.64 kB
metadata
tags:
  - generated_from_trainer
model-index:
  - name: rule_learning_margin_1mm_spanpred
    results: []

rule_learning_margin_1mm_spanpred

This model is a fine-tuned version of enoriega/rule_softmatching on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3252
  • Margin Accuracy: 0.8517

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2000
  • total_train_batch_size: 8000
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Margin Accuracy
0.5448 0.16 20 0.5229 0.7717
0.4571 0.32 40 0.4292 0.8109
0.4296 0.48 60 0.4009 0.8193
0.4028 0.64 80 0.3855 0.8296
0.3878 0.8 100 0.3757 0.8334
0.3831 0.96 120 0.3643 0.8367
0.3591 1.12 140 0.3582 0.8393
0.3598 1.28 160 0.3533 0.8401
0.3635 1.44 180 0.3442 0.8427
0.3478 1.6 200 0.3406 0.8472
0.342 1.76 220 0.3352 0.8479
0.3327 1.92 240 0.3352 0.8486
0.3487 2.08 260 0.3293 0.8487
0.3387 2.24 280 0.3298 0.8496
0.3457 2.4 300 0.3279 0.8505
0.3483 2.56 320 0.3286 0.8510
0.3421 2.72 340 0.3245 0.8517
0.3332 2.88 360 0.3252 0.8517

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0
  • Datasets 2.2.1
  • Tokenizers 0.12.1