metadata
license: mit
tags:
- generated_from_trainer
datasets:
- enoriega/keyword_pubmed
metrics:
- accuracy
model-index:
- name: kw_pubmed_vanilla_sentence_10000_0.0003_2
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: enoriega/keyword_pubmed sentence
type: enoriega/keyword_pubmed
args: sentence
metrics:
- name: Accuracy
type: accuracy
value: 0.6767448105720579
kw_pubmed_vanilla_sentence_10000_0.0003_2
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the enoriega/keyword_pubmed sentence dataset. It achieves the following results on the evaluation set:
- Loss: 1.5883
- Accuracy: 0.6767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 500
- total_train_batch_size: 8000
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1