whisper-small-hi / README.md
enniorampello's picture
End of training
d8e44bc
|
raw
history blame
2.24 kB
metadata
language:
  - hi
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Hi - Swedish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: test
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 19.647226479524615

Whisper Small Hi - Swedish

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3953
  • Wer: 19.6472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1

Training results

Training Loss Epoch Step Validation Loss Wer
0.1331 1.29 1000 0.3014 22.3602
0.0537 2.59 2000 0.2988 20.8572
0.0217 3.88 3000 0.3093 20.5641
0.004 5.17 4000 0.3551 20.0479
0.0015 6.47 5000 0.3701 20.0022
0.0015 7.76 6000 0.3769 19.7386
0.0007 9.06 7000 0.3908 19.7010
0.0006 10.35 8000 0.3953 19.6472

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.9.0+cu102
  • Datasets 2.7.1
  • Tokenizers 0.13.2