|
--- |
|
language: tr |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
|
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Turkish by Davut Emre TASAR |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice tr |
|
type: common_voice |
|
args: tr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
|
|
--- |
|
|
|
# wav2vec-tr-lite-AG |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG") |
|
model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.00005 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30.0 |
|
- mixed_precision_training: Native AMP |
|
### Training results |
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.4388 | 3.7 | 400 | 1.366 | 0.9701 | |
|
| 0.3766 | 7.4 | 800 | 0.4914 | 0.5374 | |
|
| 0.2295 | 11.11 | 1200 | 0.3934 | 0.4125 | |
|
| 0.1121 | 14.81 | 1600 | 0.3264 | 0.2904 | |
|
| 0.1473 | 18.51 | 2000 | 0.3103 | 0.2671 | |
|
| 0.1013 | 22.22 | 2400 | 0.2589 | 0.2324 | |
|
| 0.0704 | 25.92 | 2800 | 0.2826 | 0.2339 | |
|
| 0.0537 | 29.63 | 3200 | 0.2704 | 0.2309 | |
|
### Framework versions |
|
- Transformers 4.12.0.dev0 |
|
- Pytorch 1.8.1 |
|
- Datasets 1.14.1.dev0 |
|
- Tokenizers 0.10.3 |
|
|
|
|