emilstabil's picture
Training in progress, step 500
646def4
|
raw
history blame
4.01 kB
metadata
license: apache-2.0
base_model: emilstabil/mt5-base_V25775_V44105
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: mt5-base_V25775_V44105_V65464
    results: []

mt5-base_V25775_V44105_V65464

This model is a fine-tuned version of emilstabil/mt5-base_V25775_V44105 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2155
  • Rouge1: 31.936
  • Rouge2: 11.6826
  • Rougel: 21.8491
  • Rougelsum: 26.1962
  • Gen Len: 86.4335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.794 0.81 500 2.1891 29.9862 11.266 20.9904 24.6444 83.9571
1.7476 1.61 1000 2.1461 29.9736 10.782 20.6739 24.663 80.7039
1.7381 2.42 1500 2.1835 30.4805 11.0774 21.0063 24.9859 85.1545
1.6956 3.23 2000 2.1836 30.0028 10.9574 20.721 24.5095 79.6266
1.6593 4.03 2500 2.1878 29.7076 10.7504 20.4333 24.3183 77.3948
1.6416 4.84 3000 2.1937 30.4163 11.0254 20.9501 24.8448 82.9185
1.613 5.65 3500 2.2060 30.518 11.1385 21.0192 24.9011 80.5408
1.6199 6.45 4000 2.2267 30.7458 11.2048 21.3743 25.2027 82.6524
1.5769 7.26 4500 2.2113 31.6325 11.4758 21.3606 25.8015 88.4292
1.5765 8.06 5000 2.2101 31.3878 11.2897 21.3136 25.729 86.4936
1.5706 8.87 5500 2.2115 32.2878 11.5704 21.9421 26.3874 91.7768
1.5625 9.68 6000 2.2145 31.5711 11.4538 21.3608 25.8527 88.7167
1.5278 10.48 6500 2.2219 30.6581 11.2777 21.1534 25.0079 80.9785
1.5295 11.29 7000 2.2340 30.6276 11.0522 21.1302 25.0254 82.7854
1.5286 12.1 7500 2.2155 30.614 11.4733 21.3702 25.0853 78.309
1.5138 12.9 8000 2.2298 30.6334 11.3644 21.1625 25.0588 81.133
1.4935 13.71 8500 2.2163 31.0745 11.1841 21.1997 25.3718 84.8412
1.5309 14.52 9000 2.2133 31.0237 11.5053 21.5787 25.6145 80.7725
1.4852 15.32 9500 2.2239 31.9443 11.5394 21.5817 26.0822 88.2532
1.5247 16.13 10000 2.2258 31.6514 11.6206 21.5841 25.8946 85.6052
1.4931 16.94 10500 2.2205 31.522 11.5251 21.1916 25.587 87.8069
1.5085 17.74 11000 2.2110 31.4641 11.3441 21.3223 25.7801 85.7983
1.5014 18.55 11500 2.2162 31.5727 11.6335 21.6467 25.949 84.2918
1.5057 19.35 12000 2.2155 31.936 11.6826 21.8491 26.1962 86.4335

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3