use torchaudio (faster than librosa)
Browse files
README.md
CHANGED
@@ -24,7 +24,7 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
-
value: 26.
|
28 |
---
|
29 |
|
30 |
# Wav2Vec2-Large-XLSR-53-Arabic
|
@@ -39,22 +39,27 @@ When using this model, make sure that your speech input is sampled at 16kHz.
|
|
39 |
The model can be used directly (without a language model) as follows:
|
40 |
|
41 |
```python
|
42 |
-
import librosa
|
43 |
import torch
|
|
|
44 |
from datasets import load_dataset
|
45 |
from lang_trans.arabic import buckwalter
|
46 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
47 |
|
48 |
dataset = load_dataset("common_voice", "ar", split="test[:10]")
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
def prepare_example(example):
|
54 |
-
|
|
|
55 |
return example
|
56 |
|
57 |
dataset = dataset.map(prepare_example)
|
|
|
|
|
58 |
|
59 |
def predict(batch):
|
60 |
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
|
@@ -113,17 +118,23 @@ The model can be evaluated as follows on the Arabic test data of Common Voice:
|
|
113 |
|
114 |
```python
|
115 |
import jiwer
|
116 |
-
import librosa
|
117 |
import torch
|
|
|
118 |
from datasets import load_dataset
|
119 |
from lang_trans.arabic import buckwalter
|
120 |
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor
|
121 |
|
122 |
set_seed(42)
|
123 |
test_split = load_dataset("common_voice", "ar", split="test")
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def prepare_example(example):
|
126 |
-
|
|
|
127 |
return example
|
128 |
|
129 |
test_split = test_split.map(prepare_example)
|
@@ -159,7 +170,7 @@ metrics = jiwer.compute_measures(
|
|
159 |
print(f"WER: {metrics['wer']:.2%}")
|
160 |
```
|
161 |
|
162 |
-
**Test Result**: 26.
|
163 |
|
164 |
## Training
|
165 |
|
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
+
value: 26.55
|
28 |
---
|
29 |
|
30 |
# Wav2Vec2-Large-XLSR-53-Arabic
|
|
|
39 |
The model can be used directly (without a language model) as follows:
|
40 |
|
41 |
```python
|
|
|
42 |
import torch
|
43 |
+
import torchaudio
|
44 |
from datasets import load_dataset
|
45 |
from lang_trans.arabic import buckwalter
|
46 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
47 |
|
48 |
dataset = load_dataset("common_voice", "ar", split="test[:10]")
|
49 |
+
resamplers = { # all three sampling rates exist in test split
|
50 |
+
48000: torchaudio.transforms.Resample(48000, 16000),
|
51 |
+
44100: torchaudio.transforms.Resample(44100, 16000),
|
52 |
+
32000: torchaudio.transforms.Resample(32000, 16000),
|
53 |
+
}
|
54 |
|
55 |
def prepare_example(example):
|
56 |
+
speech, sampling_rate = torchaudio.load(example["path"])
|
57 |
+
example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
|
58 |
return example
|
59 |
|
60 |
dataset = dataset.map(prepare_example)
|
61 |
+
processor = Wav2Vec2Processor.from_pretrained("elgeish/wav2vec2-large-xlsr-53-arabic")
|
62 |
+
model = Wav2Vec2ForCTC.from_pretrained("elgeish/wav2vec2-large-xlsr-53-arabic").eval()
|
63 |
|
64 |
def predict(batch):
|
65 |
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
|
|
|
118 |
|
119 |
```python
|
120 |
import jiwer
|
|
|
121 |
import torch
|
122 |
+
import torchaudio
|
123 |
from datasets import load_dataset
|
124 |
from lang_trans.arabic import buckwalter
|
125 |
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor
|
126 |
|
127 |
set_seed(42)
|
128 |
test_split = load_dataset("common_voice", "ar", split="test")
|
129 |
+
resamplers = { # all three sampling rates exist in test split
|
130 |
+
48000: torchaudio.transforms.Resample(48000, 16000),
|
131 |
+
44100: torchaudio.transforms.Resample(44100, 16000),
|
132 |
+
32000: torchaudio.transforms.Resample(32000, 16000),
|
133 |
+
}
|
134 |
|
135 |
def prepare_example(example):
|
136 |
+
speech, sampling_rate = torchaudio.load(example["path"])
|
137 |
+
example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
|
138 |
return example
|
139 |
|
140 |
test_split = test_split.map(prepare_example)
|
|
|
170 |
print(f"WER: {metrics['wer']:.2%}")
|
171 |
```
|
172 |
|
173 |
+
**Test Result**: 26.55%
|
174 |
|
175 |
## Training
|
176 |
|