|
## CS224n SQuAD2.0 Project Dataset |
|
The goal of this model is to save CS224n students GPU time when establishing |
|
baselines to beat for the [Default Final Project](http://web.stanford.edu/class/cs224n/project/default-final-project-handout.pdf). |
|
The training set used to fine-tune this model is the same as |
|
the [official one](https://rajpurkar.github.io/SQuAD-explorer/); however, |
|
evaluation and model selection were performed using roughly half of the official |
|
dev set, 6078 examples, picked at random. The data files can be found at |
|
<https://github.com/elgeish/squad/tree/master/data> — this is the Winter 2020 |
|
version. Given that the official SQuAD2.0 dev set contains the project's test |
|
set, students must make sure not to use the official SQuAD2.0 dev set in any way |
|
— including the use of models fine-tuned on the official SQuAD2.0, since they |
|
used the official SQuAD2.0 dev set for model selection. |
|
|
|
## Results |
|
```json |
|
{ |
|
"exact": 65.16946363935504, |
|
"f1": 67.87348075352251, |
|
"total": 6078, |
|
"HasAns_exact": 69.51890034364261, |
|
"HasAns_f1": 75.16667217179045, |
|
"HasAns_total": 2910, |
|
"NoAns_exact": 61.17424242424242, |
|
"NoAns_f1": 61.17424242424242, |
|
"NoAns_total": 3168, |
|
"best_exact": 65.16946363935504, |
|
"best_exact_thresh": 0.0, |
|
"best_f1": 67.87348075352243, |
|
"best_f1_thresh": 0.0 |
|
} |
|
``` |
|
|
|
## Notable Arguments |
|
```json |
|
{ |
|
"do_lower_case": true, |
|
"doc_stride": 128, |
|
"fp16": false, |
|
"fp16_opt_level": "O1", |
|
"gradient_accumulation_steps": 24, |
|
"learning_rate": 3e-05, |
|
"max_answer_length": 30, |
|
"max_grad_norm": 1, |
|
"max_query_length": 64, |
|
"max_seq_length": 384, |
|
"model_name_or_path": "distilbert-base-uncased-distilled-squad", |
|
"model_type": "distilbert", |
|
"num_train_epochs": 4, |
|
"per_gpu_train_batch_size": 32, |
|
"save_steps": 5000, |
|
"seed": 42, |
|
"train_batch_size": 32, |
|
"version_2_with_negative": true, |
|
"warmup_steps": 0, |
|
"weight_decay": 0 |
|
} |
|
``` |
|
|
|
## Environment Setup |
|
```json |
|
{ |
|
"transformers": "2.5.1", |
|
"pytorch": "1.4.0=py3.6_cuda10.1.243_cudnn7.6.3_0", |
|
"python": "3.6.5=hc3d631a_2", |
|
"os": "Linux 4.15.0-1060-aws #62-Ubuntu SMP Tue Feb 11 21:23:22 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux", |
|
"gpu": "Tesla V100-SXM2-16GB" |
|
} |
|
``` |
|
|
|
## How to Cite |
|
```BibTeX |
|
@misc{elgeish2020gestalt, |
|
title={Gestalt: a Stacking Ensemble for SQuAD2.0}, |
|
author={Mohamed El-Geish}, |
|
journal={arXiv e-prints}, |
|
archivePrefix={arXiv}, |
|
eprint={2004.07067}, |
|
year={2020}, |
|
} |
|
``` |
|
|
|
## Related Models |
|
* [elgeish/cs224n-squad2.0-albert-base-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-base-v2) |
|
* [elgeish/cs224n-squad2.0-albert-large-v2](https://huggingface.co/elgeish/cs224n-squad2.0-albert-large-v2) |
|
* [elgeish/cs224n-squad2.0-albert-xxlarge-v1](https://huggingface.co/elgeish/cs224n-squad2.0-albert-xxlarge-v1) |
|
* [elgeish/cs224n-squad2.0-roberta-base](https://huggingface.co/elgeish/cs224n-squad2.0-roberta-base) |
|
|