eleninaneversmiles's picture
End of training
a286967 verified
|
raw
history blame
5.27 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-sidewalk-2
    results: []

segformer-b0-finetuned-segments-sidewalk-2

This model is a fine-tuned version of nvidia/mit-b0 on the eleninaneversmiles/wheels dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1170

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 300

Training results

Training Loss Epoch Step Validation Loss
2.9481 4.0 20 3.5435
2.6731 8.0 40 3.0067
2.6124 12.0 60 2.4952
2.0959 16.0 80 2.0672
2.0621 20.0 100 1.8896
1.8677 24.0 120 1.6907
1.7867 28.0 140 1.5101
1.3991 32.0 160 1.3829
1.1594 36.0 180 1.2332
1.0339 40.0 200 1.0889
0.8877 44.0 220 0.9699
0.9484 48.0 240 0.8998
0.8533 52.0 260 0.7505
0.5803 56.0 280 0.6548
0.5161 60.0 300 0.5719
0.4307 64.0 320 0.5128
0.3615 68.0 340 0.4228
0.3185 72.0 360 0.3733
0.2852 76.0 380 0.3421
0.299 80.0 400 0.3033
0.2014 84.0 420 0.2814
0.2139 88.0 440 0.2346
0.147 92.0 460 0.2176
0.1386 96.0 480 0.2030
0.1189 100.0 500 0.1950
0.1527 104.0 520 0.1804
0.093 108.0 540 0.1708
0.0934 112.0 560 0.1712
0.0878 116.0 580 0.1582
0.1096 120.0 600 0.1553
0.0743 124.0 620 0.1460
0.0677 128.0 640 0.1413
0.0661 132.0 660 0.1399
0.0619 136.0 680 0.1359
0.0617 140.0 700 0.1318
0.064 144.0 720 0.1316
0.0542 148.0 740 0.1309
0.0584 152.0 760 0.1286
0.0525 156.0 780 0.1298
0.069 160.0 800 0.1283
0.05 164.0 820 0.1270
0.0497 168.0 840 0.1240
0.0478 172.0 860 0.1231
0.0472 176.0 880 0.1190
0.0457 180.0 900 0.1207
0.0435 184.0 920 0.1221
0.0427 188.0 940 0.1212
0.0425 192.0 960 0.1197
0.0481 196.0 980 0.1199
0.0484 200.0 1000 0.1210
0.0553 204.0 1020 0.1197
0.0389 208.0 1040 0.1177
0.0391 212.0 1060 0.1181
0.0491 216.0 1080 0.1226
0.038 220.0 1100 0.1189
0.0443 224.0 1120 0.1177
0.038 228.0 1140 0.1178
0.0365 232.0 1160 0.1186
0.044 236.0 1180 0.1174
0.0608 240.0 1200 0.1205
0.0356 244.0 1220 0.1200
0.0431 248.0 1240 0.1195
0.0414 252.0 1260 0.1183
0.0374 256.0 1280 0.1173
0.0389 260.0 1300 0.1185
0.0335 264.0 1320 0.1181
0.0363 268.0 1340 0.1182
0.0408 272.0 1360 0.1191
0.0411 276.0 1380 0.1186
0.037 280.0 1400 0.1176
0.0424 284.0 1420 0.1185
0.04 288.0 1440 0.1200
0.0399 292.0 1460 0.1187
0.0415 296.0 1480 0.1186
0.038 300.0 1500 0.1170

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cpu
  • Datasets 2.19.2
  • Tokenizers 0.19.1