|
---
|
|
library_name: stable-baselines3
|
|
tags:
|
|
- SpaceInvadersNoFrameskip-v4
|
|
- deep-reinforcement-learning
|
|
- reinforcement-learning
|
|
- stable-baselines3
|
|
model-index:
|
|
- name: DQN
|
|
results:
|
|
- task:
|
|
type: reinforcement-learning
|
|
name: reinforcement-learning
|
|
dataset:
|
|
name: SpaceInvadersNoFrameskip-v4
|
|
type: SpaceInvadersNoFrameskip-v4
|
|
metrics:
|
|
- type: mean_reward
|
|
value: 148.00 +/- 49.31
|
|
name: mean_reward
|
|
verified: false
|
|
license: wtfpl
|
|
---
|
|
|
|
# **8/15-16/24 : I am curently trying to improve the DQN algorithm** |
|
# **to reach a score above 200 within a limited processing time** |
|
# **(1 hr GPU, 3 hrs CPU, max 500000 timesteps).** |
|
# **I am open to hyperparameters/referrals/suggestions! Thanks :)** |
|
|
|
<br><br><br><br><br><br><br><br><br><br> |
|
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** |
|
|
|
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) |
|
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). |
|
|
|
The RL Zoo is a training framework for Stable Baselines3 |
|
reinforcement learning agents, |
|
with hyperparameter optimization and pre-trained agents included. |
|
|
|
## Usage (with SB3 RL Zoo) |
|
|
|
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> |
|
SB3: https://github.com/DLR-RM/stable-baselines3<br/> |
|
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib |
|
|
|
Install the RL Zoo (with SB3 and SB3-Contrib): |
|
```bash |
|
pip install rl_zoo3 |
|
``` |
|
|
|
``` |
|
# Download model and save it into the logs/ folder |
|
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga electricwapiti -f logs/ |
|
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ |
|
``` |
|
|
|
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: |
|
``` |
|
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga electricwapiti -f logs/ |
|
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ |
|
``` |
|
|
|
## Training (with the RL Zoo) |
|
``` |
|
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ |
|
# Upload the model and generate video (when possible) |
|
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga electricwapiti |
|
``` |
|
|
|
## Hyperparameters |
|
```python |
|
OrderedDict([('batch_size', 32), |
|
('buffer_size', 100000), |
|
('env_wrapper', |
|
['stable_baselines3.common.atari_wrappers.AtariWrapper']), |
|
('exploration_final_eps', 0.01), |
|
('exploration_fraction', 0.1), |
|
('frame_stack', 4), |
|
('gradient_steps', 1), |
|
('learning_rate', 0.0001), |
|
('learning_starts', 100000), |
|
('n_timesteps', 1000000.0), |
|
('optimize_memory_usage', False), |
|
('policy', 'CnnPolicy'), |
|
('target_update_interval', 1000), |
|
('train_freq', 4), |
|
('normalize', False)]) |
|
``` |
|
|
|
# Environment Arguments |
|
```python |
|
{'render_mode': 'rgb_array'} |
|
``` |