ejqs
Fix requirement extraction logic and update sample payload for Accounting Specialist role
65e65ac
from typing import Dict, List, Any
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline, LongformerTokenizer
import torch
import torch.nn as nn
import torch.nn.functional as F
import spacy
from spacy.matcher import PhraseMatcher
from transformers import LongformerModel
from skillNer.general_params import SKILL_DB
from skillNer.skill_extractor_class import SkillExtractor
Job_num_labels = None
class EndpointHandler():
def __init__(self, path=""):
# Label mapping as provided
self.Job_label_map = {
"JT": 0, # Job Title
"JS": 1, # Job Summary
"COT": 2, # Title of Company Overview Section
"COC": 3, # Content of Company Overview Section
"RT": 4, # Title of Responsibilites Section
"RC": 5, # Content of Responsibilites Section
"RQT": 6, # Title of Required Qualifications Section
"RQC": 7, # Content of Required Qualifications Section
"PQT": 8, # Title of Preferred Qualifications Section
"PQC": 9, # Content of Preferred Qualifications Section
"ET": 10, # Employment Type
"SBC": 11, # Content of Salary and Benefits Section
"SBT": 12 # Title of Salary and Benefits Section
}
global Job_num_labels
self.Job_num_labels = len(self.Job_label_map)
Job_num_labels = self.Job_num_labels
self.Job_labels = [
{"value": "JT", "label": "Job Title"},
{"value": "JS", "label": "Job Summary"},
{"value": "COT", "label": "Title of Company Overview Section"},
{"value": "COC", "label": "Content of Company Overview Section"},
{"value": "RT", "label": "Title of Responsibilites Section"},
{"value": "RC", "label": "Content of Responsibilites Section"},
{"value": "RQT", "label": "Title of Required Qualifications Section"},
{"value": "RQC", "label": "Content of Required Qualifications Section"},
{"value": "PQT", "label": "Title of Preferred Qualifications Section"},
{"value": "PQC", "label": "Content of Preferred Qualifications Section"},
{"value": "ET", "label": "Employment Type"},
{"value": "SBC", "label": "Content of Salary and Benefits Section"},
{"value": "SBT", "label": "Title of Salary and Benefits Section"},
]
# Load tokenizer
self.Job_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
self.Job_tokenizer.cls_token
# Load model architecture
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.Job_model = LongformerSentenceClassifier(num_labels=self.Job_num_labels)
self.Job_model.to(self.device)
# Load trained weights
self.Job_model.load_state_dict(torch.load(path + "/JobSegmentClassifier3rdEpoch_v2.pth", map_location=self.device))
# Set model to evaluation mode
self.Job_model.eval()
nlp = spacy.load("en_core_web_lg")
self.skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher)
def predict_job_sections(self, model, text, tokenizer, device):
model.eval()
# Tokenize text and get input tensors
encoding = tokenizer(
text,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=4096
)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
# Identify `[CLS]` positions (assuming each sentence starts with `[CLS]`)
cls_positions = (input_ids == tokenizer.cls_token_id).nonzero(as_tuple=True)[1]
cls_positions = cls_positions.unsqueeze(0).to(device) # Shape: (1, num_sentences)
# Create global attention mask (Longformer requires at least 1 global attention token)
global_attention_mask = torch.zeros_like(input_ids)
global_attention_mask[:, cls_positions] = 1 # Assign global attention to `[CLS]` tokens
# Run the model
with torch.no_grad():
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask,
cls_positions=cls_positions
) # Shape: (1, num_sentences, num_labels)
logits = logits.squeeze(0) # Shape: (num_sentences, num_labels)
probs = F.softmax(logits, dim=-1) # Convert logits to probabilities
predictions = torch.argmax(probs, dim=-1) # Get predicted label indices
return predictions.cpu().numpy() # Convert to NumPy array for easy use
def extract_job_sections(self, text):
lines = text.splitlines()
lines = [line for line in text.splitlines() if line.strip()]
text = lines
concatenated_text = " ".join(f"{self.Job_tokenizer.cls_token} {sentence}" for sentence in text)
predictions = self.predict_job_sections(self.Job_model, concatenated_text, self.Job_tokenizer, self.device)
return predictions, text
def extract_job_requirements(self, text):
lines = text.splitlines()
lines = [line for line in text.splitlines() if line.strip()]
text = lines
concatenated_text = " ".join(f"{self.Job_tokenizer.cls_token} {sentence}" for sentence in text)
predictions = self.predict_job_sections(self.Job_model, concatenated_text, self.Job_tokenizer, self.device)
requirements = []
for i, pred in enumerate(predictions):
if self.Job_labels[pred]['value'] == "RQC" and i < len(lines):
requirements.append(lines[i])
return requirements
def label_job_post(self, text):
lines = self.extract_job_requirements(text)
response = {
"requirements": []
}
for item in lines:
response["requirements"].append(item)
response["skills"] = []
seen = set()
if response["requirements"]: # Only process if we have requirements
annotations = self.skill_extractor.annotate(" ".join(response["requirements"]))
if 'results' in annotations and 'full_matches' in annotations['results']:
for result in annotations['results']['full_matches']:
# Standardizing the skill names
skill_info = SKILL_DB.get(result["skill_id"], {})
skill_name = skill_info.get('skill_name', 'Unknown Skill')
if skill_name not in seen:
seen.add(skill_name)
response["skills"].append({'name': skill_name, 'skill_id': result["skill_id"]})
if 'results' in annotations and 'ngram_scored' in annotations['results']:
for result in annotations['results']['ngram_scored']:
if result['score'] >= 1:
# Standardizing the skill names
skill_info = SKILL_DB.get(result["skill_id"], {})
skill_name = skill_info.get('skill_name', 'Unknown Skill')
if skill_name not in seen:
seen.add(skill_name)
response["skills"].append({'name': skill_name, 'skill_id': result["skill_id"]})
return response
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
text = data['inputs']
# predictions, text = self.extract_job_sections(text)
# requirements = self.extract_job_requirements(text)
label_job_post = self.label_job_post(text)
return label_job_post
class LongformerSentenceClassifier(nn.Module):
def __init__(self, model_name="allenai/longformer-base-4096", num_labels=Job_num_labels):
"""
Custom Longformer model for sentence classification.
Args:
model_name (str): Hugging Face Longformer model.
num_labels (int): Number of possible sentence labels.
"""
super(LongformerSentenceClassifier, self).__init__()
self.longformer = LongformerModel.from_pretrained(model_name)
self.classifier = nn.Linear(self.longformer.config.hidden_size, num_labels)
def forward(self, input_ids, attention_mask, global_attention_mask, cls_positions):
"""
Forward pass for sentence classification.
Args:
input_ids (Tensor): Tokenized input IDs, shape (batch_size, max_length)
attention_mask (Tensor): Attention mask, shape (batch_size, max_length)
global_attention_mask (Tensor): Global attention mask, shape (batch_size, max_length)
cls_positions (List[Tensor]): Indices of `[CLS]` tokens for each batch element.
"""
outputs = self.longformer(
input_ids=input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask
)
last_hidden_state = outputs.last_hidden_state
cls_positions = cls_positions.view(input_ids.shape[0], -1)
cls_embeddings = last_hidden_state.gather(1, cls_positions.unsqueeze(-1).expand(-1, -1, last_hidden_state.size(-1)))
logits = self.classifier(cls_embeddings)
return logits
if __name__ == "__main__":
# init handler
my_handler = EndpointHandler(path=".")
# prepare sample payload
payload = {"inputs": """
We are seeking an experienced Accounting Specialist to join our team.
The Accounting Specialist will be responsible for various financial tasks, including reconciling accounts, assist with accounts payable,
preparing financial reports, and assisting the Controller.
The ideal candidate will have a strong background in accounting principles and practices, as well as proficiency in Quickbooks accounting
software, Excel and financial concepts.
Responsibilities:
- Perform general ledger reconciliation to ensure accuracy of financial data
- Prepare and analyze financial reports, bank reconciliations and analysis.
- Collaborate with internal teams to ensure compliance with accounting policies and procedures
- Support financial audits by providing necessary documentation and information
- Accounts Payable - Multiple Companies
- GL Reconciliations
- Prepare Weekly, Monthly and Quarterly Commission Reports
- Daily Bank Deposits
Skills:
- Proficiency in accounting software QuickBooks Online
- Strong knowledge of corporate finance principles and practices
- Experience with general ledger reconciliation
- Ability to understand concise financial reports
- Strong analytical skills for financial analysis
- Knowledge of financial auditing processes
- Understanding of cash flow analysis
- Solid grasp of financial concepts such as revenue recognition, depreciation, and accruals
- Ability to manage multiple priorities and time effectively.
Pay:
$50,000 - $60,000 per year
Benefits:
401(k) matching
Dental insurance
Health insurance
Paid time off
Vision insurance
Experience:
Microsoft Excel: 3 years (Required)
QuickBooks Online: 3 years (Required)
"""}
# holiday_payload = {"inputs": "Today is a though day"}
# test the handler
non_holiday_pred=my_handler(payload)
# holiday_payload=my_handler(holiday_payload)
# show results
print(non_holiday_pred)
# print("holiday_payload", holiday_payload)