metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- sem_eval_2018_task_1
metrics:
- f1
- accuracy
model-index:
- name: bert-finetuned-sem_eval-english
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sem_eval_2018_task_1
type: sem_eval_2018_task_1
config: subtask5.english
split: validation
args: subtask5.english
metrics:
- name: F1
type: f1
value: 0.7071713147410359
- name: Accuracy
type: accuracy
value: 0.2866817155756208
bert-finetuned-sem_eval-english
This model is a fine-tuned version of bert-base-uncased on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3063
- F1: 0.7072
- Roc Auc: 0.7999
- Accuracy: 0.2867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
No log | 1.0 | 428 | 0.3278 | 0.6765 | 0.7759 | 0.2641 |
0.3858 | 2.0 | 856 | 0.3032 | 0.6879 | 0.7804 | 0.2743 |
0.2836 | 3.0 | 1284 | 0.3017 | 0.7033 | 0.7957 | 0.2935 |
0.2446 | 4.0 | 1712 | 0.3060 | 0.7037 | 0.7970 | 0.2799 |
0.2225 | 5.0 | 2140 | 0.3063 | 0.7072 | 0.7999 | 0.2867 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1