ehsanhallo's picture
Add SetFit model
fccd4ae
|
raw
history blame
9.65 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: ' i still dont know what we would do though'
  - text: ' where`d you go!'
  - text: ' Thank you!  I`m working on `s'
  - text: Terminator Salvation... by myself.
  - text: ' lol man i got 2 1 /2 hrs an iont how i woulda made it wit out my ramen noodles and t.v. Time'
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.77
            name: Accuracy

SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'چه سودایی که سر همینا از دست دادم😂'
  • 'خو فارسی بنویس بفهمه 😂😂😂😂😂'
  • 'اینجا ایران همین سایتا هم\u200cزیادی..نیازی به بررسی ندارن...کلا دوسداریم به همچی ایراد بگیریم.'
1
  • 'کد کارت مشکی NHKDKI'
  • 'اتفاقا مسیولیت بیشتری برات میاره و درگیریات بیشتر میشه برای هدفی که داری'
  • 'من میخام شروع کنم،اورج بفروشم یا فیک؟فیک ارزونتره ولی فیکه.اورجینال هم ک گرون تره ؟بنظرت اورج میخرن؟؟'
2
  • '🔥🔥🔥🔥'
  • '😂😂😂'
  • 'چه قدر عالی وخفن 🔥🔥'

Evaluation

Metrics

Label Accuracy
all 0.77

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("ehsanhallo/setfit-paraphrase-multilingual-MiniLM-L12-v2-ig-fa")
# Run inference
preds = model(" where`d you go!")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 7.0 75
Label Training Sample Count
0 31
1 131
2 364

Training Hyperparameters

  • batch_size: (32, 16)
  • num_epochs: (2, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 5e-06)
  • head_learning_rate: 0.002
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0002 1 0.1854 -
0.0529 250 0.0626 -
0.1058 500 0.0034 0.2484
0.1588 750 0.0029 -
0.2117 1000 0.001 0.1899
0.2646 1250 0.0001 -
0.3175 1500 0.0001 0.1849
0.3704 1750 0.0001 -
0.4234 2000 0.0001 0.1876
0.4763 2250 0.0001 -
0.5292 2500 0.0 0.1888
0.5821 2750 0.0001 -
0.6351 3000 0.0 0.1885
0.6880 3250 0.0 -
0.7409 3500 0.0 0.1915
0.7938 3750 0.0 -
0.8467 4000 0.0 0.1947
0.8997 4250 0.0 -
0.9526 4500 0.0 0.1986
1.0055 4750 0.0 -
1.0584 5000 0.0 0.207
1.1113 5250 0.0 -
1.1643 5500 0.0 0.2078
1.2172 5750 0.0 -
1.2701 6000 0.0 0.2096
1.3230 6250 0.0 -
1.3760 6500 0.0 0.2095
1.4289 6750 0.0 -
1.4818 7000 0.0 0.2103
1.5347 7250 0.0 -
1.5876 7500 0.0 0.2133
1.6406 7750 0.0 -
1.6935 8000 0.0 0.2154
1.7464 8250 0.0 -
1.7993 8500 0.0 0.2141
1.8522 8750 0.0 -
1.9052 9000 0.0 0.2141
1.9581 9250 0.0 -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}