ehristoforu's picture
Upload folder using huggingface_hub
0163a2c verified
import os
import cv2
import numpy as np
import torch
import math
from dataclasses import dataclass
from transformers.models.clip.modeling_clip import CLIPVisionModelOutput
from annotator.util import HWC3
from typing import Callable, Tuple, Union
from modules.safe import Extra
from modules import devices
from scripts.logging import logger
def torch_handler(module: str, name: str):
""" Allow all torch access. Bypass A1111 safety whitelist. """
if module == 'torch':
return getattr(torch, name)
if module == 'torch._tensor':
# depth_anything dep.
return getattr(torch._tensor, name)
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
def resize_image_with_pad(input_image, resolution, skip_hwc3=False):
if skip_hwc3:
img = input_image
else:
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
k = float(resolution) / float(min(H_raw, W_raw))
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
def remove_pad(x):
return safer_memory(x[:H_target, :W_target])
return safer_memory(img_padded), remove_pad
model_canny = None
def canny(img, res=512, thr_a=100, thr_b=200, **kwargs):
l, h = thr_a, thr_b
img, remove_pad = resize_image_with_pad(img, res)
global model_canny
if model_canny is None:
from annotator.canny import apply_canny
model_canny = apply_canny
result = model_canny(img, l, h)
return remove_pad(result), True
def scribble_thr(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
result = np.zeros_like(img, dtype=np.uint8)
result[np.min(img, axis=2) < 127] = 255
return remove_pad(result), True
def scribble_xdog(img, res=512, thr_a=32, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
result = np.zeros_like(img, dtype=np.uint8)
result[2 * (255 - dog) > thr_a] = 255
return remove_pad(result), True
def tile_resample(img, res=512, thr_a=1.0, **kwargs):
img = HWC3(img)
if thr_a < 1.1:
return img, True
H, W, C = img.shape
H = int(float(H) / float(thr_a))
W = int(float(W) / float(thr_a))
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
return img, True
def threshold(img, res=512, thr_a=127, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
result = np.zeros_like(img, dtype=np.uint8)
result[np.min(img, axis=2) > thr_a] = 255
return remove_pad(result), True
def identity(img, **kwargs):
return img, True
def invert(img, res=512, **kwargs):
return 255 - HWC3(img), True
model_hed = None
def hed(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_hed
if model_hed is None:
from annotator.hed import apply_hed
model_hed = apply_hed
result = model_hed(img)
return remove_pad(result), True
def hed_safe(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_hed
if model_hed is None:
from annotator.hed import apply_hed
model_hed = apply_hed
result = model_hed(img, is_safe=True)
return remove_pad(result), True
def unload_hed():
global model_hed
if model_hed is not None:
from annotator.hed import unload_hed_model
unload_hed_model()
def scribble_hed(img, res=512, **kwargs):
result, _ = hed(img, res)
import cv2
from annotator.util import nms
result = nms(result, 127, 3.0)
result = cv2.GaussianBlur(result, (0, 0), 3.0)
result[result > 4] = 255
result[result < 255] = 0
return result, True
model_mediapipe_face = None
def mediapipe_face(img, res=512, thr_a: int = 10, thr_b: float = 0.5, **kwargs):
max_faces = int(thr_a)
min_confidence = thr_b
img, remove_pad = resize_image_with_pad(img, res)
global model_mediapipe_face
if model_mediapipe_face is None:
from annotator.mediapipe_face import apply_mediapipe_face
model_mediapipe_face = apply_mediapipe_face
result = model_mediapipe_face(img, max_faces=max_faces, min_confidence=min_confidence)
return remove_pad(result), True
model_mlsd = None
def mlsd(img, res=512, thr_a=0.1, thr_b=0.1, **kwargs):
thr_v, thr_d = thr_a, thr_b
img, remove_pad = resize_image_with_pad(img, res)
global model_mlsd
if model_mlsd is None:
from annotator.mlsd import apply_mlsd
model_mlsd = apply_mlsd
result = model_mlsd(img, thr_v, thr_d)
return remove_pad(result), True
def unload_mlsd():
global model_mlsd
if model_mlsd is not None:
from annotator.mlsd import unload_mlsd_model
unload_mlsd_model()
model_depth_anything = None
def depth_anything(img, res:int = 512, colored:bool = True, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_depth_anything
if model_depth_anything is None:
with Extra(torch_handler):
from annotator.depth_anything import DepthAnythingDetector
device = devices.get_device_for("controlnet")
model_depth_anything = DepthAnythingDetector(device)
return remove_pad(model_depth_anything(img, colored=colored)), True
def unload_depth_anything():
if model_depth_anything is not None:
model_depth_anything.unload_model()
model_midas = None
def midas(img, res=512, a=np.pi * 2.0, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_midas
if model_midas is None:
from annotator.midas import apply_midas
model_midas = apply_midas
result, _ = model_midas(img, a)
return remove_pad(result), True
def midas_normal(img, res=512, a=np.pi * 2.0, thr_a=0.4, **kwargs): # bg_th -> thr_a
bg_th = thr_a
img, remove_pad = resize_image_with_pad(img, res)
global model_midas
if model_midas is None:
from annotator.midas import apply_midas
model_midas = apply_midas
_, result = model_midas(img, a, bg_th)
return remove_pad(result), True
def unload_midas():
global model_midas
if model_midas is not None:
from annotator.midas import unload_midas_model
unload_midas_model()
model_leres = None
def leres(img, res=512, a=np.pi * 2.0, thr_a=0, thr_b=0, boost=False, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_leres
if model_leres is None:
from annotator.leres import apply_leres
model_leres = apply_leres
result = model_leres(img, thr_a, thr_b, boost=boost)
return remove_pad(result), True
def unload_leres():
global model_leres
if model_leres is not None:
from annotator.leres import unload_leres_model
unload_leres_model()
class OpenposeModel(object):
def __init__(self) -> None:
self.model_openpose = None
def run_model(
self,
img: np.ndarray,
include_body: bool,
include_hand: bool,
include_face: bool,
use_dw_pose: bool = False,
use_animal_pose: bool = False,
json_pose_callback: Callable[[str], None] = None,
res: int = 512,
**kwargs # Ignore rest of kwargs
) -> Tuple[np.ndarray, bool]:
"""Run the openpose model. Returns a tuple of
- result image
- is_image flag
The JSON format pose string is passed to `json_pose_callback`.
"""
if json_pose_callback is None:
json_pose_callback = lambda x: None
img, remove_pad = resize_image_with_pad(img, res)
if self.model_openpose is None:
from annotator.openpose import OpenposeDetector
self.model_openpose = OpenposeDetector()
return remove_pad(self.model_openpose(
img,
include_body=include_body,
include_hand=include_hand,
include_face=include_face,
use_dw_pose=use_dw_pose,
use_animal_pose=use_animal_pose,
json_pose_callback=json_pose_callback
)), True
def unload(self):
if self.model_openpose is not None:
self.model_openpose.unload_model()
g_openpose_model = OpenposeModel()
model_uniformer = None
def uniformer(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_uniformer
if model_uniformer is None:
from annotator.uniformer import apply_uniformer
model_uniformer = apply_uniformer
result = model_uniformer(img)
return remove_pad(result), True
def unload_uniformer():
global model_uniformer
if model_uniformer is not None:
from annotator.uniformer import unload_uniformer_model
unload_uniformer_model()
model_pidinet = None
def pidinet(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_pidinet
if model_pidinet is None:
from annotator.pidinet import apply_pidinet
model_pidinet = apply_pidinet
result = model_pidinet(img)
return remove_pad(result), True
def pidinet_ts(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_pidinet
if model_pidinet is None:
from annotator.pidinet import apply_pidinet
model_pidinet = apply_pidinet
result = model_pidinet(img, apply_fliter=True)
return remove_pad(result), True
def pidinet_safe(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_pidinet
if model_pidinet is None:
from annotator.pidinet import apply_pidinet
model_pidinet = apply_pidinet
result = model_pidinet(img, is_safe=True)
return remove_pad(result), True
def scribble_pidinet(img, res=512, **kwargs):
result, _ = pidinet(img, res)
import cv2
from annotator.util import nms
result = nms(result, 127, 3.0)
result = cv2.GaussianBlur(result, (0, 0), 3.0)
result[result > 4] = 255
result[result < 255] = 0
return result, True
def unload_pidinet():
global model_pidinet
if model_pidinet is not None:
from annotator.pidinet import unload_pid_model
unload_pid_model()
clip_encoder = {
'clip_g': None,
'clip_h': None,
'clip_vitl': None,
}
def clip(img, res=512, config='clip_vitl', low_vram=False, **kwargs):
img = HWC3(img)
global clip_encoder
if clip_encoder[config] is None:
from annotator.clipvision import ClipVisionDetector
if low_vram:
logger.info("Loading CLIP model on CPU.")
clip_encoder[config] = ClipVisionDetector(config, low_vram)
result = clip_encoder[config](img)
return result, False
def unload_clip(config='clip_vitl'):
global clip_encoder
if clip_encoder[config] is not None:
clip_encoder[config].unload_model()
clip_encoder[config] = None
model_color = None
def color(img, res=512, **kwargs):
img = HWC3(img)
global model_color
if model_color is None:
from annotator.color import apply_color
model_color = apply_color
result = model_color(img, res=res)
return result, True
def lineart_standard(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
x = img.astype(np.float32)
g = cv2.GaussianBlur(x, (0, 0), 6.0)
intensity = np.min(g - x, axis=2).clip(0, 255)
intensity /= max(16, np.median(intensity[intensity > 8]))
intensity *= 127
result = intensity.clip(0, 255).astype(np.uint8)
return remove_pad(result), True
model_lineart = None
def lineart(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_lineart
if model_lineart is None:
from annotator.lineart import LineartDetector
model_lineart = LineartDetector(LineartDetector.model_default)
# applied auto inversion
result = 255 - model_lineart(img)
return remove_pad(result), True
def unload_lineart():
global model_lineart
if model_lineart is not None:
model_lineart.unload_model()
model_lineart_coarse = None
def lineart_coarse(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_lineart_coarse
if model_lineart_coarse is None:
from annotator.lineart import LineartDetector
model_lineart_coarse = LineartDetector(LineartDetector.model_coarse)
# applied auto inversion
result = 255 - model_lineart_coarse(img)
return remove_pad(result), True
def unload_lineart_coarse():
global model_lineart_coarse
if model_lineart_coarse is not None:
model_lineart_coarse.unload_model()
model_lineart_anime = None
def lineart_anime(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_lineart_anime
if model_lineart_anime is None:
from annotator.lineart_anime import LineartAnimeDetector
model_lineart_anime = LineartAnimeDetector()
# applied auto inversion
result = 255 - model_lineart_anime(img)
return remove_pad(result), True
def unload_lineart_anime():
global model_lineart_anime
if model_lineart_anime is not None:
model_lineart_anime.unload_model()
model_manga_line = None
def lineart_anime_denoise(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_manga_line
if model_manga_line is None:
from annotator.manga_line import MangaLineExtration
model_manga_line = MangaLineExtration()
# applied auto inversion
result = model_manga_line(img)
return remove_pad(result), True
def unload_lineart_anime_denoise():
global model_manga_line
if model_manga_line is not None:
model_manga_line.unload_model()
model_lama = None
def lama_inpaint(img, res=512, **kwargs):
H, W, C = img.shape
raw_color = img[:, :, 0:3].copy()
raw_mask = img[:, :, 3:4].copy()
res = 256 # Always use 256 since lama is trained on 256
img_res, remove_pad = resize_image_with_pad(img, res, skip_hwc3=True)
global model_lama
if model_lama is None:
from annotator.lama import LamaInpainting
model_lama = LamaInpainting()
# applied auto inversion
prd_color = model_lama(img_res)
prd_color = remove_pad(prd_color)
prd_color = cv2.resize(prd_color, (W, H))
alpha = raw_mask.astype(np.float32) / 255.0
fin_color = prd_color.astype(np.float32) * alpha + raw_color.astype(np.float32) * (1 - alpha)
fin_color = fin_color.clip(0, 255).astype(np.uint8)
result = np.concatenate([fin_color, raw_mask], axis=2)
return result, True
def unload_lama_inpaint():
global model_lama
if model_lama is not None:
model_lama.unload_model()
model_zoe_depth = None
def zoe_depth(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_zoe_depth
if model_zoe_depth is None:
from annotator.zoe import ZoeDetector
model_zoe_depth = ZoeDetector()
result = model_zoe_depth(img)
return remove_pad(result), True
def unload_zoe_depth():
global model_zoe_depth
if model_zoe_depth is not None:
model_zoe_depth.unload_model()
model_normal_bae = None
def normal_bae(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_normal_bae
if model_normal_bae is None:
from annotator.normalbae import NormalBaeDetector
model_normal_bae = NormalBaeDetector()
result = model_normal_bae(img)
return remove_pad(result), True
def unload_normal_bae():
global model_normal_bae
if model_normal_bae is not None:
model_normal_bae.unload_model()
model_oneformer_coco = None
def oneformer_coco(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_oneformer_coco
if model_oneformer_coco is None:
from annotator.oneformer import OneformerDetector
model_oneformer_coco = OneformerDetector(OneformerDetector.configs["coco"])
result = model_oneformer_coco(img)
return remove_pad(result), True
def unload_oneformer_coco():
global model_oneformer_coco
if model_oneformer_coco is not None:
model_oneformer_coco.unload_model()
model_oneformer_ade20k = None
def oneformer_ade20k(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_oneformer_ade20k
if model_oneformer_ade20k is None:
from annotator.oneformer import OneformerDetector
model_oneformer_ade20k = OneformerDetector(OneformerDetector.configs["ade20k"])
result = model_oneformer_ade20k(img)
return remove_pad(result), True
def unload_oneformer_ade20k():
global model_oneformer_ade20k
if model_oneformer_ade20k is not None:
model_oneformer_ade20k.unload_model()
model_shuffle = None
def shuffle(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
img = remove_pad(img)
global model_shuffle
if model_shuffle is None:
from annotator.shuffle import ContentShuffleDetector
model_shuffle = ContentShuffleDetector()
result = model_shuffle(img)
return result, True
def recolor_luminance(img, res=512, thr_a=1.0, **kwargs):
result = cv2.cvtColor(HWC3(img), cv2.COLOR_BGR2LAB)
result = result[:, :, 0].astype(np.float32) / 255.0
result = result ** thr_a
result = (result * 255.0).clip(0, 255).astype(np.uint8)
result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB)
return result, True
def recolor_intensity(img, res=512, thr_a=1.0, **kwargs):
result = cv2.cvtColor(HWC3(img), cv2.COLOR_BGR2HSV)
result = result[:, :, 2].astype(np.float32) / 255.0
result = result ** thr_a
result = (result * 255.0).clip(0, 255).astype(np.uint8)
result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB)
return result, True
def blur_gaussian(img, res=512, thr_a=1.0, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
img = remove_pad(img)
result = cv2.GaussianBlur(img, (0, 0), float(thr_a))
return result, True
model_anime_face_segment = None
def anime_face_segment(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_anime_face_segment
if model_anime_face_segment is None:
from annotator.anime_face_segment import AnimeFaceSegment
model_anime_face_segment = AnimeFaceSegment()
result = model_anime_face_segment(img)
return remove_pad(result), True
def unload_anime_face_segment():
global model_anime_face_segment
if model_anime_face_segment is not None:
model_anime_face_segment.unload_model()
def densepose(img, res=512, cmap="viridis", **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
from annotator.densepose import apply_densepose
result = apply_densepose(img, cmap=cmap)
return remove_pad(result), True
def unload_densepose():
from annotator.densepose import unload_model
unload_model()
model_te_hed = None
def te_hed(img, res=512, thr_a=2, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_te_hed
if model_te_hed is None:
from annotator.teed import TEEDDector
model_te_hed = TEEDDector()
result = model_te_hed(img, safe_steps=int(thr_a))
return remove_pad(result), True
def unload_te_hed():
if model_te_hed is not None:
model_te_hed.unload_model()
class InsightFaceModel:
def __init__(self, face_analysis_model_name: str = "buffalo_l"):
self.model = None
self.face_analysis_model_name = face_analysis_model_name
self.antelopev2_installed = False
def install_antelopev2(self):
"""insightface's github release on antelopev2 model is down. Downloading
from huggingface mirror."""
from basicsr.utils.download_util import load_file_from_url
from annotator.annotator_path import models_path
model_root = os.path.join(models_path, "insightface", "models", "antelopev2")
if not model_root:
os.makedirs(model_root, exist_ok=True)
for local_file, url in (
("1k3d68.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/1k3d68.onnx"),
("2d106det.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/2d106det.onnx"),
("genderage.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/genderage.onnx"),
("glintr100.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/glintr100.onnx"),
("scrfd_10g_bnkps.onnx", "https://huggingface.co/DIAMONIK7777/antelopev2/resolve/main/scrfd_10g_bnkps.onnx"),
):
local_path = os.path.join(model_root, local_file)
if not os.path.exists(local_path):
load_file_from_url(url, model_root)
self.antelopev2_installed = True
def load_model(self):
if self.model is None:
from insightface.app import FaceAnalysis
from annotator.annotator_path import models_path
self.model = FaceAnalysis(
name=self.face_analysis_model_name,
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'],
root=os.path.join(models_path, "insightface"),
)
self.model.prepare(ctx_id=0, det_size=(640, 640))
def run_model(self, img: np.ndarray, **kwargs) -> Tuple[torch.Tensor, bool]:
self.load_model()
img = HWC3(img)
faces = self.model.get(img)
if not faces:
raise Exception(f"Insightface: No face found in image.")
if len(faces) > 1:
logger.warn("Insightface: More than one face is detected in the image. "
f"Only the first one will be used.")
return torch.from_numpy(faces[0].normed_embedding).unsqueeze(0), False
def run_model_instant_id(
self,
img: np.ndarray,
res: int = 512,
return_keypoints: bool = False,
**kwargs
) -> Tuple[Union[np.ndarray, torch.Tensor], bool]:
"""Run the insightface model for instant_id.
Arguments:
- img: Input image in any size.
- res: Resolution used to resize image.
- return_keypoints: Whether to return keypoints image or face embedding.
"""
def draw_kps(img: np.ndarray, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
h, w, _ = img.shape
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
return out_img.astype(np.uint8)
if not self.antelopev2_installed:
self.install_antelopev2()
self.load_model()
img, remove_pad = resize_image_with_pad(img, res)
face_info = self.model.get(img)
if not face_info:
raise Exception(f"Insightface: No face found in image.")
if len(face_info) > 1:
logger.warn("Insightface: More than one face is detected in the image. "
f"Only the biggest one will be used.")
# only use the maximum face
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1]
if return_keypoints:
return remove_pad(draw_kps(img, face_info['kps'])), True
else:
return torch.from_numpy(face_info['embedding']), False
g_insight_face_model = InsightFaceModel()
g_insight_face_instant_id_model = InsightFaceModel(face_analysis_model_name="antelopev2")
@dataclass
class FaceIdPlusInput:
face_embed: torch.Tensor
clip_embed: CLIPVisionModelOutput
def face_id_plus(img, low_vram=False, **kwargs):
""" FaceID plus uses both face_embeding from insightface and clip_embeding from clip. """
face_embed, _ = g_insight_face_model.run_model(img)
clip_embed, _ = clip(img, config='clip_h', low_vram=low_vram)
return FaceIdPlusInput(face_embed, clip_embed), False
class HandRefinerModel:
def __init__(self):
self.model = None
self.device = devices.get_device_for("controlnet")
def load_model(self):
if self.model is None:
from annotator.annotator_path import models_path
from hand_refiner import MeshGraphormerDetector # installed via hand_refiner_portable
with Extra(torch_handler):
self.model = MeshGraphormerDetector.from_pretrained(
"hr16/ControlNet-HandRefiner-pruned",
cache_dir=os.path.join(models_path, "hand_refiner"),
device=self.device,
)
else:
self.model.to(self.device)
def unload(self):
if self.model is not None:
self.model.to("cpu")
def run_model(self, img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
self.load_model()
with Extra(torch_handler):
depth_map, mask, info = self.model(
img, output_type="np",
detect_resolution=res,
mask_bbox_padding=30,
)
return remove_pad(depth_map), True
g_hand_refiner_model = HandRefinerModel()
model_free_preprocessors = [
"reference_only",
"reference_adain",
"reference_adain+attn",
"revision_clipvision",
"revision_ignore_prompt"
]
no_control_mode_preprocessors = [
"revision_clipvision",
"revision_ignore_prompt",
"clip_vision",
"ip-adapter_clip_sd15",
"ip-adapter_clip_sdxl",
"ip-adapter_clip_sdxl_plus_vith",
"t2ia_style_clipvision",
"ip-adapter_face_id",
"ip-adapter_face_id_plus",
]
flag_preprocessor_resolution = "Preprocessor Resolution"
preprocessor_sliders_config = {
"none": [],
"inpaint": [],
"inpaint_only": [],
"revision_clipvision": [
None,
{
"name": "Noise Augmentation",
"value": 0.0,
"min": 0.0,
"max": 1.0
},
],
"revision_ignore_prompt": [
None,
{
"name": "Noise Augmentation",
"value": 0.0,
"min": 0.0,
"max": 1.0
},
],
"canny": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
},
{
"name": "Canny Low Threshold",
"value": 100,
"min": 1,
"max": 255
},
{
"name": "Canny High Threshold",
"value": 200,
"min": 1,
"max": 255
},
],
"mlsd": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
},
{
"name": "MLSD Value Threshold",
"min": 0.01,
"max": 2.0,
"value": 0.1,
"step": 0.01
},
{
"name": "MLSD Distance Threshold",
"min": 0.01,
"max": 20.0,
"value": 0.1,
"step": 0.01
}
],
"hed": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"scribble_hed": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"hed_safe": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"openpose": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"openpose_full": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"dw_openpose_full": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"animal_openpose": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"segmentation": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"depth": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"depth_leres": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
},
{
"name": "Remove Near %",
"min": 0,
"max": 100,
"value": 0,
"step": 0.1,
},
{
"name": "Remove Background %",
"min": 0,
"max": 100,
"value": 0,
"step": 0.1,
}
],
"depth_leres++": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
},
{
"name": "Remove Near %",
"min": 0,
"max": 100,
"value": 0,
"step": 0.1,
},
{
"name": "Remove Background %",
"min": 0,
"max": 100,
"value": 0,
"step": 0.1,
}
],
"normal_map": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
},
{
"name": "Normal Background Threshold",
"min": 0.0,
"max": 1.0,
"value": 0.4,
"step": 0.01
}
],
"threshold": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
},
{
"name": "Binarization Threshold",
"min": 0,
"max": 255,
"value": 127
}
],
"scribble_xdog": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
},
{
"name": "XDoG Threshold",
"min": 1,
"max": 64,
"value": 32,
}
],
"blur_gaussian": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
},
{
"name": "Sigma",
"min": 0.01,
"max": 64.0,
"value": 9.0,
}
],
"tile_resample": [
None,
{
"name": "Down Sampling Rate",
"value": 1.0,
"min": 1.0,
"max": 8.0,
"step": 0.01
}
],
"tile_colorfix": [
None,
{
"name": "Variation",
"value": 8.0,
"min": 3.0,
"max": 32.0,
"step": 1.0
}
],
"tile_colorfix+sharp": [
None,
{
"name": "Variation",
"value": 8.0,
"min": 3.0,
"max": 32.0,
"step": 1.0
},
{
"name": "Sharpness",
"value": 1.0,
"min": 0.0,
"max": 2.0,
"step": 0.01
}
],
"reference_only": [
None,
{
"name": r'Style Fidelity (only for "Balanced" mode)',
"value": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}
],
"reference_adain": [
None,
{
"name": r'Style Fidelity (only for "Balanced" mode)',
"value": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}
],
"reference_adain+attn": [
None,
{
"name": r'Style Fidelity (only for "Balanced" mode)',
"value": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}
],
"inpaint_only+lama": [],
"color": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048,
}
],
"mediapipe_face": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048,
},
{
"name": "Max Faces",
"value": 1,
"min": 1,
"max": 10,
"step": 1
},
{
"name": "Min Face Confidence",
"value": 0.5,
"min": 0.01,
"max": 1.0,
"step": 0.01
}
],
"recolor_luminance": [
None,
{
"name": "Gamma Correction",
"value": 1.0,
"min": 0.1,
"max": 2.0,
"step": 0.001
}
],
"recolor_intensity": [
None,
{
"name": "Gamma Correction",
"value": 1.0,
"min": 0.1,
"max": 2.0,
"step": 0.001
}
],
"anime_face_segment": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
}
],
"densepose": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"densepose_parula": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"depth_hand_refiner": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
}
],
"te_hed": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
},
{
"name": "Safe Steps",
"min": 0,
"max": 10,
"value": 2,
"step": 1,
},
],
}
preprocessor_filters = {
"All": "none",
"Canny": "canny",
"Depth": "depth_midas",
"NormalMap": "normal_bae",
"OpenPose": "openpose_full",
"MLSD": "mlsd",
"Lineart": "lineart_standard (from white bg & black line)",
"SoftEdge": "softedge_pidinet",
"Scribble/Sketch": "scribble_pidinet",
"Segmentation": "seg_ofade20k",
"Shuffle": "shuffle",
"Tile/Blur": "tile_resample",
"Inpaint": "inpaint_only",
"InstructP2P": "none",
"Reference": "reference_only",
"Recolor": "recolor_luminance",
"Revision": "revision_clipvision",
"T2I-Adapter": "none",
"IP-Adapter": "ip-adapter_clip_sd15",
"Instant_ID": "instant_id",
}
preprocessor_filters_aliases = {
'instructp2p': ['ip2p'],
'segmentation': ['seg'],
'normalmap': ['normal'],
't2i-adapter': ['t2i_adapter', 't2iadapter', 't2ia'],
'ip-adapter': ['ip_adapter', 'ipadapter'],
'scribble/sketch': ['scribble', 'sketch'],
'tile/blur': ['tile', 'blur'],
'openpose':['openpose', 'densepose'],
} # must use all lower texts