|
import torch |
|
import torch.nn as nn |
|
|
|
from modules import devices |
|
|
|
|
|
try: |
|
from sgm.modules.diffusionmodules.openaimodel import conv_nd, linear, zero_module, timestep_embedding, \ |
|
TimestepEmbedSequential, ResBlock, Downsample, SpatialTransformer, exists |
|
using_sgm = True |
|
except: |
|
from ldm.modules.diffusionmodules.openaimodel import conv_nd, linear, zero_module, timestep_embedding, \ |
|
TimestepEmbedSequential, ResBlock, Downsample, SpatialTransformer, exists |
|
using_sgm = False |
|
|
|
|
|
class PlugableControlModel(nn.Module): |
|
def __init__(self, config, state_dict=None): |
|
super().__init__() |
|
self.config = config |
|
self.control_model = ControlNet(**self.config).cpu() |
|
if state_dict is not None: |
|
self.control_model.load_state_dict(state_dict, strict=False) |
|
self.gpu_component = None |
|
self.is_control_lora = False |
|
|
|
def reset(self): |
|
pass |
|
|
|
def forward(self, *args, **kwargs): |
|
return self.control_model(*args, **kwargs) |
|
|
|
def aggressive_lowvram(self): |
|
self.to('cpu') |
|
|
|
def send_me_to_gpu(module, _): |
|
if self.gpu_component == module: |
|
return |
|
|
|
if self.gpu_component is not None: |
|
self.gpu_component.to('cpu') |
|
|
|
module.to(devices.get_device_for("controlnet")) |
|
self.gpu_component = module |
|
|
|
self.control_model.time_embed.register_forward_pre_hook(send_me_to_gpu) |
|
self.control_model.input_hint_block.register_forward_pre_hook(send_me_to_gpu) |
|
self.control_model.label_emb.register_forward_pre_hook(send_me_to_gpu) |
|
for m in self.control_model.input_blocks: |
|
m.register_forward_pre_hook(send_me_to_gpu) |
|
for m in self.control_model.zero_convs: |
|
m.register_forward_pre_hook(send_me_to_gpu) |
|
self.control_model.middle_block.register_forward_pre_hook(send_me_to_gpu) |
|
self.control_model.middle_block_out.register_forward_pre_hook(send_me_to_gpu) |
|
return |
|
|
|
def fullvram(self): |
|
self.to(devices.get_device_for("controlnet")) |
|
return |
|
|
|
|
|
class ControlNet(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
model_channels, |
|
hint_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
num_classes=None, |
|
use_checkpoint=False, |
|
use_fp16=True, |
|
num_heads=-1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_spatial_transformer=True, |
|
transformer_depth=1, |
|
context_dim=None, |
|
n_embed=None, |
|
legacy=False, |
|
disable_self_attentions=None, |
|
num_attention_blocks=None, |
|
disable_middle_self_attn=False, |
|
use_linear_in_transformer=False, |
|
adm_in_channels=None, |
|
transformer_depth_middle=None, |
|
device=None, |
|
global_average_pooling=False, |
|
): |
|
super().__init__() |
|
|
|
self.global_average_pooling = global_average_pooling |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
self.dims = dims |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
if isinstance(transformer_depth, int): |
|
transformer_depth = len(channel_mult) * [transformer_depth] |
|
if transformer_depth_middle is None: |
|
transformer_depth_middle = transformer_depth[-1] |
|
if isinstance(num_res_blocks, int): |
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks] |
|
else: |
|
self.num_res_blocks = num_res_blocks |
|
|
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.num_classes = num_classes |
|
self.use_checkpoint = use_checkpoint |
|
self.dtype = torch.float16 if use_fp16 else torch.float32 |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
self.predict_codebook_ids = n_embed is not None |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), |
|
) |
|
|
|
if self.num_classes is not None: |
|
if isinstance(self.num_classes, int): |
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim) |
|
elif self.num_classes == "continuous": |
|
print("setting up linear c_adm embedding layer") |
|
self.label_emb = nn.Linear(1, time_embed_dim) |
|
elif self.num_classes == "sequential": |
|
assert adm_in_channels is not None |
|
self.label_emb = nn.Sequential( |
|
nn.Sequential( |
|
linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device), |
|
) |
|
) |
|
else: |
|
raise ValueError() |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
TimestepEmbedSequential( |
|
conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device) |
|
) |
|
] |
|
) |
|
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) |
|
|
|
self.input_hint_block = TimestepEmbedSequential( |
|
conv_nd(dims, hint_channels, 16, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 16, 16, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 16, 32, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
conv_nd(dims, 32, 32, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 32, 96, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
conv_nd(dims, 96, 96, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 96, 256, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) |
|
) |
|
|
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for nr in range(self.num_res_blocks[level]): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm |
|
) |
|
] |
|
ch = mult * model_channels |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
if exists(disable_self_attentions): |
|
disabled_sa = disable_self_attentions[level] |
|
else: |
|
disabled_sa = False |
|
|
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: |
|
layers.append( |
|
SpatialTransformer( |
|
ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, |
|
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self.zero_convs.append(self.make_zero_conv(ch)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
self.zero_convs.append(self.make_zero_conv(ch)) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm |
|
), |
|
SpatialTransformer( |
|
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, |
|
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm |
|
), |
|
) |
|
self.middle_block_out = self.make_zero_conv(ch) |
|
self._feature_size += ch |
|
|
|
def make_zero_conv(self, channels): |
|
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) |
|
|
|
def forward(self, x, hint, timesteps, context, y=None, **kwargs): |
|
original_type = x.dtype |
|
|
|
x = x.to(self.dtype) |
|
hint = hint.to(self.dtype) |
|
timesteps = timesteps.to(self.dtype) |
|
context = context.to(self.dtype) |
|
|
|
if y is not None: |
|
y = y.to(self.dtype) |
|
|
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype) |
|
emb = self.time_embed(t_emb) |
|
|
|
guided_hint = self.input_hint_block(hint, emb, context) |
|
outs = [] |
|
|
|
if self.num_classes is not None: |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x |
|
for module, zero_conv in zip(self.input_blocks, self.zero_convs): |
|
if guided_hint is not None: |
|
h = module(h, emb, context) |
|
h += guided_hint |
|
guided_hint = None |
|
else: |
|
h = module(h, emb, context) |
|
outs.append(zero_conv(h, emb, context)) |
|
|
|
h = self.middle_block(h, emb, context) |
|
outs.append(self.middle_block_out(h, emb, context)) |
|
|
|
outs = [o.to(original_type) for o in outs] |
|
|
|
return outs |
|
|