|
--- |
|
pipeline_tag: text-classification |
|
license: apache-2.0 |
|
language: |
|
- it |
|
tags: |
|
- cross-encoder |
|
- sentence-similarity |
|
- transformers |
|
--- |
|
# Cross-Encoder |
|
|
|
The model can be used for Information Retrieval: given a query, encode the query will all possible passages. Then sort the passages in a decreasing order. |
|
|
|
<p align="center"> |
|
<img src="https://www.exibart.com/repository/media/2020/07/bridget-riley-cool-edge.jpg" width="400"> </br> |
|
Bridget Riley, COOL EDGE |
|
</p> |
|
|
|
## Training Data |
|
|
|
This model was trained on a custom biomedical ranking dataset. |
|
|
|
## Usage and Performance |
|
|
|
```python |
|
from sentence_transformers import CrossEncoder |
|
model = CrossEncoder('efederici/cross-encoder-distilbert-it') |
|
scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')]) |
|
``` |
|
|
|
The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`. |