edumunozsala
commited on
Commit
•
43d3864
1
Parent(s):
7b69d18
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
- code
|
5 |
+
- coding
|
6 |
+
- llama-2
|
7 |
+
model-index:
|
8 |
+
- name: Llama-2-7b-4bit-python-coder
|
9 |
+
results: []
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- code
|
13 |
+
datasets:
|
14 |
+
- iamtarun/python_code_instructions_18k_alpaca
|
15 |
+
pipeline_tag: text-generation
|
16 |
+
---
|
17 |
+
|
18 |
+
|
19 |
+
# LlaMa 2 7b 4-bit Python Coder 👩💻
|
20 |
+
|
21 |
+
**LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** in 4-bit with [PEFT](https://github.com/huggingface/peft) library.
|
22 |
+
|
23 |
+
## Pretrained description
|
24 |
+
|
25 |
+
[Llama-2](https://huggingface.co/meta-llama/Llama-2-7b)
|
26 |
+
|
27 |
+
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.
|
28 |
+
|
29 |
+
Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety
|
30 |
+
|
31 |
+
## Training data
|
32 |
+
|
33 |
+
[python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca)
|
34 |
+
|
35 |
+
The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following `bitsandbytes` quantization config was used during training:
|
40 |
+
- load_in_8bit: False
|
41 |
+
- load_in_4bit: True
|
42 |
+
- llm_int8_threshold: 6.0
|
43 |
+
- llm_int8_skip_modules: None
|
44 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
45 |
+
- llm_int8_has_fp16_weight: False
|
46 |
+
- bnb_4bit_quant_type: nf4
|
47 |
+
- bnb_4bit_use_double_quant: False
|
48 |
+
- bnb_4bit_compute_dtype: float16
|
49 |
+
|
50 |
+
**SFTTrainer arguments**
|
51 |
+
```py
|
52 |
+
# Number of training epochs
|
53 |
+
num_train_epochs = 1
|
54 |
+
# Enable fp16/bf16 training (set bf16 to True with an A100)
|
55 |
+
fp16 = False
|
56 |
+
bf16 = True
|
57 |
+
# Batch size per GPU for training
|
58 |
+
per_device_train_batch_size = 4
|
59 |
+
# Number of update steps to accumulate the gradients for
|
60 |
+
gradient_accumulation_steps = 1
|
61 |
+
# Enable gradient checkpointing
|
62 |
+
gradient_checkpointing = True
|
63 |
+
# Maximum gradient normal (gradient clipping)
|
64 |
+
max_grad_norm = 0.3
|
65 |
+
# Initial learning rate (AdamW optimizer)
|
66 |
+
learning_rate = 2e-4
|
67 |
+
# Weight decay to apply to all layers except bias/LayerNorm weights
|
68 |
+
weight_decay = 0.001
|
69 |
+
# Optimizer to use
|
70 |
+
optim = "paged_adamw_32bit"
|
71 |
+
# Learning rate schedule
|
72 |
+
lr_scheduler_type = "cosine" #"constant"
|
73 |
+
# Ratio of steps for a linear warmup (from 0 to learning rate)
|
74 |
+
warmup_ratio = 0.03
|
75 |
+
```
|
76 |
+
### Framework versions
|
77 |
+
- PEFT 0.4.0
|
78 |
+
|
79 |
+
### Example of usage
|
80 |
+
```py
|
81 |
+
import torch
|
82 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
83 |
+
|
84 |
+
model_id = "mrm8488/llama-2-coder-7b"
|
85 |
+
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
87 |
+
|
88 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")
|
89 |
+
|
90 |
+
sample = dataset[randrange(len(dataset))]
|
91 |
+
|
92 |
+
prompt = f"""### Instruction:
|
93 |
+
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
|
94 |
+
|
95 |
+
### Task:
|
96 |
+
{sample['instruction']}
|
97 |
+
|
98 |
+
### Input:
|
99 |
+
{sample['input']}
|
100 |
+
|
101 |
+
### Response:
|
102 |
+
"""
|
103 |
+
|
104 |
+
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
|
105 |
+
# with torch.inference_mode():
|
106 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.5)
|
107 |
+
|
108 |
+
print(f"Prompt:\n{prompt}\n")
|
109 |
+
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
|
110 |
+
print(f"Ground truth:\n{sample['output']}")
|
111 |
+
|
112 |
+
```
|
113 |
+
|
114 |
+
### Citation
|
115 |
+
|
116 |
+
```
|
117 |
+
@misc {edumunozsala_2023,
|
118 |
+
author = { {Eduardo Muñoz} },
|
119 |
+
title = { llama-2-7b-int4-python-coder (Revision d30d193) },
|
120 |
+
year = 2023,
|
121 |
+
url = { https://huggingface.co/edumunozsala/llama-2-7b-int4-python-18k-alpaca },
|
122 |
+
doi = { 10.57967/hf/0931 },
|
123 |
+
publisher = { Hugging Face }
|
124 |
+
}
|
125 |
+
```
|