End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -56,31 +56,16 @@ The following hyperparameters were used during training:
|
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
59 |
-
- gradient_accumulation_steps: 2
|
60 |
-
- total_train_batch_size: 16
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
|
|
71 |
-
| 1.5738 | 2.0 | 113 | 1.4564 | 0.68 |
|
72 |
-
| 1.2321 | 2.99 | 169 | 1.1535 | 0.74 |
|
73 |
-
| 0.9847 | 4.0 | 226 | 0.9799 | 0.74 |
|
74 |
-
| 0.8254 | 4.99 | 282 | 0.8700 | 0.78 |
|
75 |
-
| 0.6017 | 6.0 | 339 | 0.8466 | 0.74 |
|
76 |
-
| 0.631 | 6.99 | 395 | 0.6828 | 0.8 |
|
77 |
-
| 0.4887 | 8.0 | 452 | 0.6360 | 0.81 |
|
78 |
-
| 0.3798 | 8.99 | 508 | 0.6158 | 0.82 |
|
79 |
-
| 0.2427 | 10.0 | 565 | 0.6163 | 0.78 |
|
80 |
-
| 0.2077 | 10.99 | 621 | 0.6197 | 0.8 |
|
81 |
-
| 0.1506 | 12.0 | 678 | 0.5992 | 0.8 |
|
82 |
-
| 0.1467 | 12.99 | 734 | 0.6003 | 0.8 |
|
83 |
-
| 0.1967 | 13.88 | 784 | 0.6141 | 0.8 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.81
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.6711
|
36 |
+
- Accuracy: 0.81
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 1
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.0001 | 1.0 | 113 | 1.6711 | 0.81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
### Framework versions
|