RoBERTaLexPT-base / README.md
eduagarcia's picture
Update README.md
38482ba verified
---
datasets:
- eduagarcia/LegalPT_dedup
- eduagarcia/CrawlPT_dedup
language:
- pt
pipeline_tag: fill-mask
tags:
- legal
model-index:
- name: RoBERTaLexPT-base
results:
- task:
type: token-classification
dataset:
type: lener_br
name: lener_br
split: test
metrics:
- type: seqeval
value: 0.9073
name: F1
args:
scheme: IOB2
- task:
type: token-classification
dataset:
type: eduagarcia/PortuLex_benchmark
name: UlyNER-PL Coarse
config: UlyssesNER-Br-PL-coarse
split: test
metrics:
- type: seqeval
value: 0.8856
name: F1
args:
scheme: IOB2
- task:
type: token-classification
dataset:
type: eduagarcia/PortuLex_benchmark
name: UlyNER-PL Fine
config: UlyssesNER-Br-PL-fine
split: test
metrics:
- type: seqeval
value: 0.8603
name: F1
args:
scheme: IOB2
- task:
type: token-classification
dataset:
type: eduagarcia/PortuLex_benchmark
name: FGV-STF
config: fgv-coarse
split: test
metrics:
- type: seqeval
value: 0.8040
name: F1
args:
scheme: IOB2
- task:
type: token-classification
dataset:
type: eduagarcia/PortuLex_benchmark
name: RRIP
config: rrip
split: test
metrics:
- type: seqeval
value: 0.8322
name: F1
args:
scheme: IOB2
- task:
type: token-classification
dataset:
type: eduagarcia/PortuLex_benchmark
name: PortuLex
split: test
metrics:
- type: seqeval
value: 0.8541
name: Average F1
args:
scheme: IOB2
license: cc-by-4.0
metrics:
- seqeval
---
# RoBERTaLexPT-base
RoBERTaLexPT-base is a Portuguese Masked Language Model pretrained from scratch from the [LegalPT](https://huggingface.co/datasets/eduagarcia/LegalPT_dedup) and [CrawlPT](https://huggingface.co/datasets/eduagarcia/CrawlPT_dedup) corpora, using the same architecture as [RoBERTa-base](https://huggingface.co/FacebookAI/roberta-base), introduced by Liu et al. (2019).
- **Language(s) (NLP):** Portuguese (pt-BR and pt-PT)
- **License:** [Creative Commons Attribution 4.0 International Public License](https://creativecommons.org/licenses/by/4.0/deed.en)
- **Repository:** https://github.com/eduagarcia/roberta-legal-portuguese
- **Paper:** https://aclanthology.org/2024.propor-1.38/
## Evaluation
The model was evaluated on ["PortuLex" benchmark](https://huggingface.co/datasets/eduagarcia/PortuLex_benchmark), a four-task benchmark designed to evaluate the quality and performance of language models in the Portuguese legal domain.
Macro F1-Score (\%) for multiple models evaluated on PortuLex benchmark test splits:
| **Model** | **LeNER** | **UlyNER-PL** | **FGV-STF** | **RRIP** | **Average (%)** |
|----------------------------------------------------------------------------|-----------|-----------------|-------------|:---------:|-----------------|
| | | Coarse/Fine | Coarse | | |
| [BERTimbau-base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) | 88.34 | 86.39/83.83 | 79.34 | 82.34 | 83.78 |
| [BERTimbau-large](https://huggingface.co/neuralmind/bert-large-portuguese-cased) | 88.64 | 87.77/84.74 | 79.71 | **83.79** | 84.60 |
| [Albertina-PT-BR-base](https://huggingface.co/PORTULAN/albertina-ptbr-based) | 89.26 | 86.35/84.63 | 79.30 | 81.16 | 83.80 |
| [Albertina-PT-BR-xlarge](https://huggingface.co/PORTULAN/albertina-ptbr) | 90.09 | 88.36/**86.62** | 79.94 | 82.79 | 85.08 |
| [BERTikal-base](https://huggingface.co/felipemaiapolo/legalnlp-bert) | 83.68 | 79.21/75.70 | 77.73 | 81.11 | 79.99 |
| [JurisBERT-base](https://huggingface.co/alfaneo/jurisbert-base-portuguese-uncased) | 81.74 | 81.67/77.97 | 76.04 | 80.85 | 79.61 |
| [BERTimbauLAW-base](https://huggingface.co/alfaneo/bertimbaulaw-base-portuguese-cased) | 84.90 | 87.11/84.42 | 79.78 | 82.35 | 83.20 |
| [Legal-XLM-R-base](https://huggingface.co/joelniklaus/legal-xlm-roberta-base) | 87.48 | 83.49/83.16 | 79.79 | 82.35 | 83.24 |
| [Legal-XLM-R-large](https://huggingface.co/joelniklaus/legal-xlm-roberta-large) | 88.39 | 84.65/84.55 | 79.36 | 81.66 | 83.50 |
| [Legal-RoBERTa-PT-large](https://huggingface.co/joelniklaus/legal-portuguese-roberta-large) | 87.96 | 88.32/84.83 | 79.57 | 81.98 | 84.02 |
| **Ours** | | | | | |
| RoBERTaTimbau-base (Reproduction of BERTimbau) | 89.68 | 87.53/85.74 | 78.82 | 82.03 | 84.29 |
| RoBERTaLegalPT-base (Trained on LegalPT) | 90.59 | 85.45/84.40 | 79.92 | 82.84 | 84.57 |
| [RoBERTaCrawlPT-base](https://huggingface.co/eduagarcia/RoBERTaCrawlPT-base) (Trained on CrawlPT) | 89.24 | 88.22/86.58 | 79.88 | 82.80 | 84.83 |
| **RoBERTaLexPT-base (this)** (Trained on CrawlPT + LegalPT) | **90.73** | **88.56**/86.03 | **80.40** | 83.22 | **85.41** |
In summary, RoBERTaLexPT consistently achieves top legal NLP effectiveness despite its base size.
With sufficient pre-training data, it can surpass larger models. The results highlight the importance of domain-diverse training data over sheer model scale.
## Training Details
RoBERTaLexPT-base is pretrained on:
- [LegalPT](https://huggingface.co/datasets/eduagarcia/LegalPT_dedup) is a Portuguese legal corpus by aggregating diverse sources of up to 125GiB data.
- [CrawlPT](https://huggingface.co/datasets/eduagarcia/CrawlPT_dedup) is a composition of three Portuguese general corpora: [brWaC](https://huggingface.co/datasets/brwac), [CC100 PT subset](https://huggingface.co/datasets/eduagarcia/cc100-pt), [OSCAR-2301 PT subset](https://huggingface.co/datasets/eduagarcia/OSCAR-2301-pt_dedup).
### Training Procedure
Our pretraining process was executed using the [Fairseq library v0.10.2](https://github.com/facebookresearch/fairseq/tree/v0.10.2) on a DGX-A100 cluster, utilizing a total of 2 Nvidia A100 80 GB GPUs.
The complete training of a single configuration takes approximately three days.
This computational cost is similar to the work of [BERTimbau-base](https://huggingface.co/neuralmind/bert-base-portuguese-cased), exposing the model to approximately 65 billion tokens during training.
#### Preprocessing
We deduplicated all subsets of the LegalPT and CrawlPT Corpus using the a MinHash algorithm and Locality Sensitive Hashing implementation from the libary [text-dedup](https://github.com/ChenghaoMou/text-dedup) to find clusters of duplicate documents.
To ensure that domain models are not constrained by a generic vocabulary, we utilized the [HuggingFace Tokenizers](https://github.com/huggingface/tokenizers) -- BPE algorithm to train a vocabulary for each pre-training corpus used.
#### Training Hyperparameters
The pretraining process involved training the model for 62,500 steps, with a batch size of 2048 and a learning rate of 4e-4, each sequence containing a maximum of 512 tokens.
The weight initialization is random.
We employed the masked language modeling objective, where 15\% of the input tokens were randomly masked.
The optimization was performed using the AdamW optimizer with a linear warmup and a linear decay learning rate schedule.
For other parameters we adopted the standard [RoBERTa-base hyperparameters](https://huggingface.co/FacebookAI/roberta-base):
| **Hyperparameter** | **RoBERTa-base** |
|------------------------|-----------------:|
| Number of layers | 12 |
| Hidden size | 768 |
| FFN inner hidden size | 3072 |
| Attention heads | 12 |
| Attention head size | 64 |
| Dropout | 0.1 |
| Attention dropout | 0.1 |
| Warmup steps | 6k |
| Peak learning rate | 4e-4 |
| Batch size | 2048 |
| Weight decay | 0.01 |
| Maximum training steps | 62.5k |
| Learning rate decay | Linear |
| AdamW $$\epsilon$$ | 1e-6 |
| AdamW $$\beta_1$$ | 0.9 |
| AdamW $$\beta_2$$ | 0.98 |
| Gradient clipping | 0.0 |
## Citation
```
@inproceedings{garcia-etal-2024-robertalexpt,
title = "{R}o{BERT}a{L}ex{PT}: A Legal {R}o{BERT}a Model pretrained with deduplication for {P}ortuguese",
author = "Garcia, Eduardo A. S. and
Silva, Nadia F. F. and
Siqueira, Felipe and
Albuquerque, Hidelberg O. and
Gomes, Juliana R. S. and
Souza, Ellen and
Lima, Eliomar A.",
editor = "Gamallo, Pablo and
Claro, Daniela and
Teixeira, Ant{\'o}nio and
Real, Livy and
Garcia, Marcos and
Oliveira, Hugo Gon{\c{c}}alo and
Amaro, Raquel",
booktitle = "Proceedings of the 16th International Conference on Computational Processing of Portuguese",
month = mar,
year = "2024",
address = "Santiago de Compostela, Galicia/Spain",
publisher = "Association for Computational Lingustics",
url = "https://aclanthology.org/2024.propor-1.38",
pages = "374--383",
}
```
## Acknowledgment
This work has been supported by the AI Center of Excellence (Centro de Excelência em Inteligência Artificial – CEIA) of the Institute of Informatics at the Federal University of Goiás (INF-UFG).