eagle0504 commited on
Commit
41662a2
·
verified ·
1 Parent(s): 4381177

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +171 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - gretelai/synthetic_text_to_sql
5
+ base_model:
6
+ - eagle0504/openai-gsm8k-codealpaca-20k-enhanced-deepseek-r1-distill-qwen-1.5b
7
+ library_name: transformers
8
+ ---
9
+
10
+
11
+ # 🧠 eagle0504/qwen-distilled-scout-1.5b-instruct-gen1
12
+
13
+ This model is a fine-tuned version of [`deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B), enhanced with instruction-tuned chain-of-thought (CoT) reasoning across three problem domains: **math**, **text-to-SQL**, and **Python programming**.
14
+
15
+ Fine-tuning was conducted using DeepSpeed on a multi-A100 GPU setup via RunPod for efficient training in memory-constrained environments. The training dataset includes CoT-formatted tasks with natural language questions and structured reasoning paths.
16
+
17
+ Inference notebook is publicly available [here](https://colab.research.google.com/drive/10CJqyIAOd9QnEp0W8NN_SxdiOrFsBz0-?usp=sharing).
18
+
19
+ ---
20
+
21
+ ## 📎 Model Details
22
+
23
+ * **Base Model:** [`deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B)
24
+ * **Language:** English
25
+ * **Architecture:** Causal Language Model (Decoder-only)
26
+ * **Tokenizer:** AutoTokenizer from base model
27
+ * **Parameter Count:** 1.5 Billion
28
+ * **Training Framework:** 🧢 Transformers + DeepSpeed
29
+ * **Compute Environment:** RunPod (6x A100 SXM, 192 vCPU, 1.5TB RAM)
30
+
31
+ ---
32
+
33
+ ## 🧪 Training Dataset
34
+
35
+ **Datasets Used:**
36
+
37
+ * [`gretelai/synthetic_text_to_sql`](https://huggingface.co/datasets/gretelai/synthetic_text_to_sql)
38
+ * [`eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1`](https://huggingface.co/datasets/eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1)
39
+ * [`eagle0504/augmented_codealpaca-20k-using-together-ai-deepseek-v1`](https://huggingface.co/datasets/eagle0504/augmented_codealpaca-20k-using-together-ai-deepseek-v1)
40
+
41
+ Each example in the dataset follows the structure:
42
+
43
+ ```xml
44
+ <instruction>This is a [math/SQL/Python] problem.</instruction>
45
+ <question>...</question>
46
+ <think>...</think>
47
+ <response>...</response>
48
+ ```
49
+
50
+ This instruction format ensures that the model understands the task type explicitly and applies step-by-step reasoning across all domains.
51
+
52
+ ---
53
+
54
+ ## 📊 Fine-Tuning Summary
55
+
56
+ The base model [`deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) was fine-tuned on three different datasets using DeepSpeed across various RunPod infrastructure setups. Below is a consolidated summary of the training configurations and results:
57
+
58
+ | Model ID | Dataset Description | GPUs | vCPUs | RAM (GB) | Disk per GPU | Container Image | Duration | Cost | DeepSpeed Stage | Precision | Mean Token Accuracy |
59
+ | ------------------------------------------------------------------------------- | ------------------------------- | ------------- | ----- | -------- | ------------ | ---------------------------------------------------------- | -------- | ------- | --------------- | --------- | ------------------- |
60
+ | `eagle0504/finetuned-deepseek-r1-distill-qwen-1.5b-by-openai-gsm8k-enhanced-v2` | OpenAI GSM8K Enhanced v2 | 6 × H100 PCIe | 144 | 1132 | 20 GB | `runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04` | 2 hrs | \~\$28 | Stage 1 | FP16 | 98% |
61
+ | `eagle0504/openai-gsm8k-codealpaca-20k-enhanced-deepseek-r1-distill-qwen-1.5b` | GSM8K + CodeAlpaca-20K Enhanced | 4 × A100 SXM | 146 | 1144 | 20 GB | `runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04` | 2 hrs | \~\$14+ | Stage 1 | FP16 | 97% |
62
+ | `eagle0504/qwen-distilled-scout-1.5b` | Custom CoT + SQL-Reasoning | 6 × A100 SXM | 192 | 1536 | 20 GB | `runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04` | 1.5 hrs | \~\$21 | Stage 2 | FP16 | 97% |
63
+
64
+ ---
65
+
66
+ ## 🏗️ Training Configuration
67
+
68
+ Training was performed with the following configuration:
69
+
70
+ * **Batch Size:** 2 (with gradient accumulation steps = 4)
71
+ * **Epochs:** 15
72
+ * **Max Length:** 1024 tokens
73
+ * **Optimizer:** AdamW
74
+ * **Learning Rate:** 5e-5 (with warmup + linear decay)
75
+ * **Precision:** FP16
76
+ * **DeepSpeed Config:**
77
+
78
+ * Zero Redundancy Optimizer Stage 2
79
+ * Gradient Clipping: 1.0
80
+ * AllGather + ReduceScatter optimization
81
+ * **Checkpoint Saving:** Disabled to minimize disk usage
82
+
83
+ ---
84
+
85
+ ## 🧶 Evaluation Metric
86
+
87
+ The model is evaluated with a custom token-level accuracy metric:
88
+
89
+ * **Metric:** Mean token-level accuracy
90
+ * **Definition:** Accuracy over all non-masked tokens (`labels != -100`)
91
+ * **Implementation:** NumPy-based vectorized comparison between predicted tokens and ground truth
92
+
93
+ ---
94
+
95
+ ## 🚀 Use Case
96
+
97
+ This model is tuned for **instruction-driven chain-of-thought generation**, and is especially useful in:
98
+
99
+ * Educational tools for logical reasoning and coding
100
+ * Auto SQL and code generation for tabular or structured systems
101
+ * Teaching agents in math, database, and programming domains
102
+ * Conversational agents requiring task-specific structured outputs
103
+
104
+ ---
105
+
106
+ ## 📦 How to Use
107
+
108
+ ```python
109
+ from transformers import StoppingCriteria, StoppingCriteriaList
110
+ import torch
111
+
112
+ class StopOnTokens(StoppingCriteria):
113
+ def __init__(self, stop_token_ids: list):
114
+ super().__init__()
115
+ self.stop_token_ids = stop_token_ids
116
+
117
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
118
+ return any(input_ids[0, -len(token):].tolist() == token for token in self.stop_token_ids)
119
+ ```
120
+
121
+ ```python
122
+ from transformers import AutoModelForCausalLM, AutoTokenizer
123
+
124
+ model = AutoModelForCausalLM.from_pretrained("eagle0504/qwen-distilled-scout-1.5b-instruct-gen1")
125
+ tokenizer = AutoTokenizer.from_pretrained("eagle0504/qwen-distilled-scout-1.5b-instruct-gen1")
126
+
127
+ stop_sequence = "</response>"
128
+ stop_ids = tokenizer.encode(stop_sequence, add_special_tokens=False)
129
+ stopping_criteria = StoppingCriteriaList([StopOnTokens([stop_ids])])
130
+
131
+ inputs = tokenizer(
132
+ "<instruction>This is a math problem.</instruction><question>Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether?</question>",
133
+ return_tensors="pt"
134
+ )
135
+
136
+ outputs = model.generate(
137
+ **inputs,
138
+ max_new_tokens=230,
139
+ stopping_criteria=stopping_criteria
140
+ )
141
+
142
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
143
+ ```
144
+
145
+ ---
146
+
147
+ ## 📊 Limitations
148
+
149
+ * The model is specialized for instruction-following tasks in math, SQL, and Python reasoning. It may require further fine-tuning to generalize to open-domain dialogue or creative generation.
150
+ * Input length is capped at 1024 tokens, beyond which content will be truncated.
151
+
152
+ ---
153
+
154
+ ## 🧑‍💻 Author
155
+
156
+ * **Name:** Yiqiao Yin
157
+ * **Hugging Face:** [eagle0504](https://huggingface.co/eagle0504)
158
+ * **Organization:** \[WYN AI / Independent AI Researcher]
159
+
160
+ ---
161
+
162
+ ## 📝 Citation
163
+
164
+ ```bibtex
165
+ @misc{yin2025instructgen1,
166
+ title={Instruction-Tuned Qwen 1.5B Fine-tuned on Math + SQL + Python CoT Tasks},
167
+ author={Yiqiao Yin},
168
+ year={2025},
169
+ howpublished={\url{https://huggingface.co/eagle0504/qwen-distilled-scout-1.5b-instruct-gen1}},
170
+ }
171
+ ```