|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: ALL_mt5-base_15_spider_new2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ALL_mt5-base_15_spider_new2 |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3806 |
|
- Rouge2 Precision: 0.6339 |
|
- Rouge2 Recall: 0.4352 |
|
- Rouge2 Fmeasure: 0.487 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| 0.1807 | 1.0 | 4847 | 0.2361 | 0.546 | 0.3648 | 0.4103 | |
|
| 0.1003 | 2.0 | 9694 | 0.2335 | 0.5674 | 0.3804 | 0.4267 | |
|
| 0.0695 | 3.0 | 14541 | 0.2456 | 0.5959 | 0.4034 | 0.4521 | |
|
| 0.0565 | 4.0 | 19388 | 0.2553 | 0.6119 | 0.4163 | 0.466 | |
|
| 0.0421 | 5.0 | 24235 | 0.2739 | 0.62 | 0.4241 | 0.4745 | |
|
| 0.0354 | 6.0 | 29082 | 0.2824 | 0.6257 | 0.4252 | 0.4769 | |
|
| 0.0317 | 7.0 | 33929 | 0.2992 | 0.6321 | 0.4299 | 0.4822 | |
|
| 0.0257 | 8.0 | 38776 | 0.3090 | 0.6191 | 0.4201 | 0.4715 | |
|
| 0.0229 | 9.0 | 43623 | 0.3216 | 0.6336 | 0.4322 | 0.4848 | |
|
| 0.0205 | 10.0 | 48470 | 0.3331 | 0.6339 | 0.4347 | 0.4865 | |
|
| 0.0171 | 11.0 | 53317 | 0.3484 | 0.6281 | 0.4305 | 0.482 | |
|
| 0.0141 | 12.0 | 58164 | 0.3614 | 0.6364 | 0.4359 | 0.4882 | |
|
| 0.0135 | 13.0 | 63011 | 0.3634 | 0.6324 | 0.4345 | 0.486 | |
|
| 0.0131 | 14.0 | 67858 | 0.3744 | 0.6334 | 0.4349 | 0.4867 | |
|
| 0.0116 | 15.0 | 72705 | 0.3806 | 0.6339 | 0.4352 | 0.487 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.7.dev0 |
|
- Tokenizers 0.13.3 |
|
|