|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: ALL_mt5-base_15_spider_15_wikiSQL_new |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ALL_mt5-base_15_spider_15_wikiSQL_new |
|
|
|
This model was trained from scratch on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0160 |
|
- Rouge2 Precision: 0.9066 |
|
- Rouge2 Recall: 0.6077 |
|
- Rouge2 Fmeasure: 0.6916 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 19 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| 0.3243 | 1.0 | 1021 | 0.1423 | 0.6057 | 0.3898 | 0.4466 | |
|
| 0.1428 | 2.0 | 2042 | 0.0864 | 0.7175 | 0.4822 | 0.5453 | |
|
| 0.1071 | 3.0 | 3063 | 0.0644 | 0.7701 | 0.5183 | 0.5867 | |
|
| 0.0845 | 4.0 | 4084 | 0.0517 | 0.798 | 0.5398 | 0.611 | |
|
| 0.0723 | 5.0 | 5105 | 0.0417 | 0.8294 | 0.5584 | 0.6336 | |
|
| 0.0612 | 6.0 | 6126 | 0.0349 | 0.8411 | 0.5623 | 0.6394 | |
|
| 0.0528 | 7.0 | 7147 | 0.0302 | 0.853 | 0.5731 | 0.6514 | |
|
| 0.0475 | 8.0 | 8168 | 0.0254 | 0.8734 | 0.5842 | 0.6649 | |
|
| 0.0427 | 9.0 | 9189 | 0.0227 | 0.8855 | 0.5943 | 0.6757 | |
|
| 0.0398 | 10.0 | 10210 | 0.0208 | 0.8901 | 0.5965 | 0.6787 | |
|
| 0.0362 | 11.0 | 11231 | 0.0190 | 0.8943 | 0.5986 | 0.6815 | |
|
| 0.0343 | 12.0 | 12252 | 0.0178 | 0.9024 | 0.6045 | 0.6882 | |
|
| 0.0329 | 13.0 | 13273 | 0.0170 | 0.9075 | 0.6075 | 0.692 | |
|
| 0.0316 | 14.0 | 14294 | 0.0162 | 0.9081 | 0.6092 | 0.6935 | |
|
| 0.031 | 15.0 | 15315 | 0.0160 | 0.9066 | 0.6077 | 0.6916 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.7.dev0 |
|
- Tokenizers 0.13.3 |
|
|