Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: out
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
15 |
+
# out
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9808
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-06
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: cosine
|
44 |
+
- lr_scheduler_warmup_steps: 10
|
45 |
+
- num_epochs: 3
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
+
| 0.9152 | 0.01 | 1 | 0.9037 |
|
52 |
+
| 0.9101 | 0.15 | 18 | 0.8461 |
|
53 |
+
| 0.7589 | 0.3 | 36 | 0.8437 |
|
54 |
+
| 0.8274 | 0.45 | 54 | 0.8441 |
|
55 |
+
| 0.7255 | 0.61 | 72 | 0.8435 |
|
56 |
+
| 0.85 | 0.76 | 90 | 0.8419 |
|
57 |
+
| 0.9083 | 0.91 | 108 | 0.8408 |
|
58 |
+
| 0.3208 | 1.06 | 126 | 0.9177 |
|
59 |
+
| 0.3738 | 1.21 | 144 | 0.8924 |
|
60 |
+
| 0.4034 | 1.36 | 162 | 0.8914 |
|
61 |
+
| 0.3936 | 1.51 | 180 | 0.9032 |
|
62 |
+
| 0.3188 | 1.66 | 198 | 0.9001 |
|
63 |
+
| 0.4331 | 1.82 | 216 | 0.8973 |
|
64 |
+
| 0.3946 | 1.97 | 234 | 0.8963 |
|
65 |
+
| 0.1531 | 2.12 | 252 | 0.9653 |
|
66 |
+
| 0.1741 | 2.27 | 270 | 0.9841 |
|
67 |
+
| 0.2371 | 2.42 | 288 | 0.9784 |
|
68 |
+
| 0.271 | 2.57 | 306 | 0.9801 |
|
69 |
+
| 0.2632 | 2.72 | 324 | 0.9808 |
|
70 |
+
| 0.1691 | 2.87 | 342 | 0.9808 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.35.2
|
76 |
+
- Pytorch 2.0.1+cu118
|
77 |
+
- Datasets 2.15.0
|
78 |
+
- Tokenizers 0.15.0
|