|
import cv2 |
|
import numpy as np |
|
|
|
import torch |
|
from torch.nn import functional as F |
|
import torch.nn as nn |
|
|
|
|
|
def encode_segmentation_rgb(segmentation, no_neck=True): |
|
parse = segmentation |
|
|
|
face_part_ids = [1, 2, 3, 4, 5, 6, 10, 12, 13] if no_neck else [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14] |
|
mouth_id = 11 |
|
|
|
face_map = np.zeros([parse.shape[0], parse.shape[1]]) |
|
mouth_map = np.zeros([parse.shape[0], parse.shape[1]]) |
|
|
|
|
|
for valid_id in face_part_ids: |
|
valid_index = np.where(parse==valid_id) |
|
face_map[valid_index] = 255 |
|
valid_index = np.where(parse==mouth_id) |
|
mouth_map[valid_index] = 255 |
|
|
|
|
|
|
|
return np.stack([face_map, mouth_map], axis=2) |
|
|
|
|
|
class SoftErosion(nn.Module): |
|
def __init__(self, kernel_size=15, threshold=0.6, iterations=1): |
|
super(SoftErosion, self).__init__() |
|
r = kernel_size // 2 |
|
self.padding = r |
|
self.iterations = iterations |
|
self.threshold = threshold |
|
|
|
|
|
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size)) |
|
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2) |
|
kernel = dist.max() - dist |
|
kernel /= kernel.sum() |
|
kernel = kernel.view(1, 1, *kernel.shape) |
|
self.register_buffer('weight', kernel) |
|
|
|
def forward(self, x): |
|
x = x.float() |
|
for i in range(self.iterations - 1): |
|
x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)) |
|
x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding) |
|
|
|
mask = x >= self.threshold |
|
x[mask] = 1.0 |
|
x[~mask] /= x[~mask].max() |
|
|
|
return x, mask |
|
|
|
|
|
def postprocess(swapped_face, target, target_mask,smooth_mask): |
|
|
|
|
|
mask_tensor = torch.from_numpy(target_mask.copy().transpose((2, 0, 1))).float().mul_(1/255.0).cuda() |
|
face_mask_tensor = mask_tensor[0] + mask_tensor[1] |
|
|
|
soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0)) |
|
soft_face_mask_tensor.squeeze_() |
|
|
|
soft_face_mask = soft_face_mask_tensor.cpu().numpy() |
|
soft_face_mask = soft_face_mask[:, :, np.newaxis] |
|
|
|
result = swapped_face * soft_face_mask + target * (1 - soft_face_mask) |
|
result = result[:,:,::-1] |
|
return result |
|
|
|
def reverse2wholeimage(b_align_crop_tenor_list,swaped_imgs, mats, crop_size, oriimg, logoclass, save_path = '', \ |
|
no_simswaplogo = False,pasring_model =None,norm = None, use_mask = False): |
|
|
|
target_image_list = [] |
|
img_mask_list = [] |
|
if use_mask: |
|
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).cuda() |
|
else: |
|
pass |
|
|
|
|
|
|
|
|
|
for swaped_img, mat ,source_img in zip(swaped_imgs, mats,b_align_crop_tenor_list): |
|
swaped_img = swaped_img.cpu().detach().numpy().transpose((1, 2, 0)) |
|
img_white = np.full((crop_size,crop_size), 255, dtype=float) |
|
|
|
|
|
mat_rev = np.zeros([2,3]) |
|
div1 = mat[0][0]*mat[1][1]-mat[0][1]*mat[1][0] |
|
mat_rev[0][0] = mat[1][1]/div1 |
|
mat_rev[0][1] = -mat[0][1]/div1 |
|
mat_rev[0][2] = -(mat[0][2]*mat[1][1]-mat[0][1]*mat[1][2])/div1 |
|
div2 = mat[0][1]*mat[1][0]-mat[0][0]*mat[1][1] |
|
mat_rev[1][0] = mat[1][0]/div2 |
|
mat_rev[1][1] = -mat[0][0]/div2 |
|
mat_rev[1][2] = -(mat[0][2]*mat[1][0]-mat[0][0]*mat[1][2])/div2 |
|
|
|
orisize = (oriimg.shape[1], oriimg.shape[0]) |
|
if use_mask: |
|
source_img_norm = norm(source_img) |
|
source_img_512 = F.interpolate(source_img_norm,size=(512,512)) |
|
out = pasring_model(source_img_512)[0] |
|
parsing = out.squeeze(0).detach().cpu().numpy().argmax(0) |
|
vis_parsing_anno = parsing.copy().astype(np.uint8) |
|
tgt_mask = encode_segmentation_rgb(vis_parsing_anno) |
|
if tgt_mask.sum() >= 5000: |
|
|
|
target_mask = cv2.resize(tgt_mask, (crop_size, crop_size)) |
|
|
|
target_image_parsing = postprocess(swaped_img, source_img[0].cpu().detach().numpy().transpose((1, 2, 0)), target_mask,smooth_mask) |
|
|
|
|
|
target_image = cv2.warpAffine(target_image_parsing, mat_rev, orisize) |
|
|
|
else: |
|
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)[..., ::-1] |
|
else: |
|
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize) |
|
|
|
|
|
img_white = cv2.warpAffine(img_white, mat_rev, orisize) |
|
|
|
|
|
img_white[img_white>20] =255 |
|
|
|
img_mask = img_white |
|
|
|
|
|
|
|
|
|
|
|
kernel = np.ones((40,40),np.uint8) |
|
img_mask = cv2.erode(img_mask,kernel,iterations = 1) |
|
kernel_size = (20, 20) |
|
blur_size = tuple(2*i+1 for i in kernel_size) |
|
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
img_mask /= 255 |
|
|
|
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) |
|
|
|
|
|
|
|
|
|
|
|
if use_mask: |
|
|
|
target_image = np.array(target_image, dtype=float) * 255 |
|
|
|
else: |
|
target_image = np.array(target_image, dtype=float)[..., ::-1] * 255 |
|
|
|
|
|
img_mask_list.append(img_mask) |
|
target_image_list.append(target_image) |
|
|
|
|
|
|
|
|
|
img = np.array(oriimg, dtype=float) |
|
for img_mask, target_image in zip(img_mask_list, target_image_list): |
|
img = img_mask * target_image + (1-img_mask) * img |
|
|
|
final_img = img.astype(np.uint8) |
|
if not no_simswaplogo: |
|
final_img = logoclass.apply_frames(final_img) |
|
cv2.imwrite(save_path, final_img) |
|
|