API_MC_AI / SimSwap /util /reverse2original.py
duyv's picture
Upload 204 files
f884940 verified
import cv2
import numpy as np
# import time
import torch
from torch.nn import functional as F
import torch.nn as nn
def encode_segmentation_rgb(segmentation, no_neck=True):
parse = segmentation
face_part_ids = [1, 2, 3, 4, 5, 6, 10, 12, 13] if no_neck else [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14]
mouth_id = 11
# hair_id = 17
face_map = np.zeros([parse.shape[0], parse.shape[1]])
mouth_map = np.zeros([parse.shape[0], parse.shape[1]])
# hair_map = np.zeros([parse.shape[0], parse.shape[1]])
for valid_id in face_part_ids:
valid_index = np.where(parse==valid_id)
face_map[valid_index] = 255
valid_index = np.where(parse==mouth_id)
mouth_map[valid_index] = 255
# valid_index = np.where(parse==hair_id)
# hair_map[valid_index] = 255
#return np.stack([face_map, mouth_map,hair_map], axis=2)
return np.stack([face_map, mouth_map], axis=2)
class SoftErosion(nn.Module):
def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
super(SoftErosion, self).__init__()
r = kernel_size // 2
self.padding = r
self.iterations = iterations
self.threshold = threshold
# Create kernel
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
kernel = dist.max() - dist
kernel /= kernel.sum()
kernel = kernel.view(1, 1, *kernel.shape)
self.register_buffer('weight', kernel)
def forward(self, x):
x = x.float()
for i in range(self.iterations - 1):
x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding))
x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)
mask = x >= self.threshold
x[mask] = 1.0
x[~mask] /= x[~mask].max()
return x, mask
def postprocess(swapped_face, target, target_mask,smooth_mask):
# target_mask = cv2.resize(target_mask, (self.size, self.size))
mask_tensor = torch.from_numpy(target_mask.copy().transpose((2, 0, 1))).float().mul_(1/255.0).cuda()
face_mask_tensor = mask_tensor[0] + mask_tensor[1]
soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0))
soft_face_mask_tensor.squeeze_()
soft_face_mask = soft_face_mask_tensor.cpu().numpy()
soft_face_mask = soft_face_mask[:, :, np.newaxis]
result = swapped_face * soft_face_mask + target * (1 - soft_face_mask)
result = result[:,:,::-1]# .astype(np.uint8)
return result
def reverse2wholeimage(b_align_crop_tenor_list,swaped_imgs, mats, crop_size, oriimg, logoclass, save_path = '', \
no_simswaplogo = False,pasring_model =None,norm = None, use_mask = False):
target_image_list = []
img_mask_list = []
if use_mask:
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).cuda()
else:
pass
# print(len(swaped_imgs))
# print(mats)
# print(len(b_align_crop_tenor_list))
for swaped_img, mat ,source_img in zip(swaped_imgs, mats,b_align_crop_tenor_list):
swaped_img = swaped_img.cpu().detach().numpy().transpose((1, 2, 0))
img_white = np.full((crop_size,crop_size), 255, dtype=float)
# inverse the Affine transformation matrix
mat_rev = np.zeros([2,3])
div1 = mat[0][0]*mat[1][1]-mat[0][1]*mat[1][0]
mat_rev[0][0] = mat[1][1]/div1
mat_rev[0][1] = -mat[0][1]/div1
mat_rev[0][2] = -(mat[0][2]*mat[1][1]-mat[0][1]*mat[1][2])/div1
div2 = mat[0][1]*mat[1][0]-mat[0][0]*mat[1][1]
mat_rev[1][0] = mat[1][0]/div2
mat_rev[1][1] = -mat[0][0]/div2
mat_rev[1][2] = -(mat[0][2]*mat[1][0]-mat[0][0]*mat[1][2])/div2
orisize = (oriimg.shape[1], oriimg.shape[0])
if use_mask:
source_img_norm = norm(source_img)
source_img_512 = F.interpolate(source_img_norm,size=(512,512))
out = pasring_model(source_img_512)[0]
parsing = out.squeeze(0).detach().cpu().numpy().argmax(0)
vis_parsing_anno = parsing.copy().astype(np.uint8)
tgt_mask = encode_segmentation_rgb(vis_parsing_anno)
if tgt_mask.sum() >= 5000:
# face_mask_tensor = tgt_mask[...,0] + tgt_mask[...,1]
target_mask = cv2.resize(tgt_mask, (crop_size, crop_size))
# print(source_img)
target_image_parsing = postprocess(swaped_img, source_img[0].cpu().detach().numpy().transpose((1, 2, 0)), target_mask,smooth_mask)
target_image = cv2.warpAffine(target_image_parsing, mat_rev, orisize)
# target_image_parsing = cv2.warpAffine(swaped_img, mat_rev, orisize)
else:
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)[..., ::-1]
else:
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize)
# source_image = cv2.warpAffine(source_img, mat_rev, orisize)
img_white = cv2.warpAffine(img_white, mat_rev, orisize)
img_white[img_white>20] =255
img_mask = img_white
# if use_mask:
# kernel = np.ones((40,40),np.uint8)
# img_mask = cv2.erode(img_mask,kernel,iterations = 1)
# else:
kernel = np.ones((40,40),np.uint8)
img_mask = cv2.erode(img_mask,kernel,iterations = 1)
kernel_size = (20, 20)
blur_size = tuple(2*i+1 for i in kernel_size)
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
# kernel = np.ones((10,10),np.uint8)
# img_mask = cv2.erode(img_mask,kernel,iterations = 1)
img_mask /= 255
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
# pasing mask
# target_image_parsing = postprocess(target_image, source_image, tgt_mask)
if use_mask:
# target_image = np.array(target_image, dtype=np.float) * 255
target_image = np.array(target_image, dtype=float) * 255
else:
target_image = np.array(target_image, dtype=float)[..., ::-1] * 255
img_mask_list.append(img_mask)
target_image_list.append(target_image)
# target_image /= 255
# target_image = 0
img = np.array(oriimg, dtype=float)
for img_mask, target_image in zip(img_mask_list, target_image_list):
img = img_mask * target_image + (1-img_mask) * img
final_img = img.astype(np.uint8)
if not no_simswaplogo:
final_img = logoclass.apply_frames(final_img)
cv2.imwrite(save_path, final_img)