|
|
|
import cv2 |
|
import torch |
|
import fractions |
|
import numpy as np |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
from models.models import create_model |
|
from options.test_options import TestOptions |
|
|
|
|
|
def lcm(a, b): return abs(a * b) / fractions.gcd(a, b) if a and b else 0 |
|
|
|
transformer = transforms.Compose([ |
|
transforms.ToTensor(), |
|
|
|
]) |
|
|
|
transformer_Arcface = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
detransformer = transforms.Compose([ |
|
transforms.Normalize([0, 0, 0], [1/0.229, 1/0.224, 1/0.225]), |
|
transforms.Normalize([-0.485, -0.456, -0.406], [1, 1, 1]) |
|
]) |
|
if __name__ == '__main__': |
|
opt = TestOptions().parse() |
|
|
|
start_epoch, epoch_iter = 1, 0 |
|
|
|
torch.nn.Module.dump_patches = True |
|
model = create_model(opt) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
|
|
pic_a = opt.pic_a_path |
|
img_a = Image.open(pic_a).convert('RGB') |
|
img_a = transformer_Arcface(img_a) |
|
img_id = img_a.view(-1, img_a.shape[0], img_a.shape[1], img_a.shape[2]) |
|
|
|
pic_b = opt.pic_b_path |
|
|
|
img_b = Image.open(pic_b).convert('RGB') |
|
img_b = transformer(img_b) |
|
img_att = img_b.view(-1, img_b.shape[0], img_b.shape[1], img_b.shape[2]) |
|
|
|
|
|
img_id = img_id.cuda() |
|
img_att = img_att.cuda() |
|
|
|
|
|
img_id_downsample = F.interpolate(img_id, size=(112,112)) |
|
latend_id = model.netArc(img_id_downsample) |
|
latend_id = latend_id.detach().to('cpu') |
|
latend_id = latend_id/np.linalg.norm(latend_id,axis=1,keepdims=True) |
|
latend_id = latend_id.to('cuda') |
|
|
|
|
|
|
|
img_fake = model(img_id, img_att, latend_id, latend_id, True) |
|
|
|
|
|
for i in range(img_id.shape[0]): |
|
if i == 0: |
|
row1 = img_id[i] |
|
row2 = img_att[i] |
|
row3 = img_fake[i] |
|
else: |
|
row1 = torch.cat([row1, img_id[i]], dim=2) |
|
row2 = torch.cat([row2, img_att[i]], dim=2) |
|
row3 = torch.cat([row3, img_fake[i]], dim=2) |
|
|
|
|
|
full = row3.detach() |
|
full = full.permute(1, 2, 0) |
|
output = full.to('cpu') |
|
output = np.array(output) |
|
output = output[..., ::-1] |
|
|
|
output = output*255 |
|
|
|
cv2.imwrite(opt.output_path + 'result.jpg', output) |