API_MC_AI / SimSwap /data /data_loader_Swapping.py
duyv's picture
Upload 204 files
f884940 verified
import os
import glob
import torch
import random
from PIL import Image
from torch.utils import data
from torchvision import transforms as T
class data_prefetcher():
def __init__(self, loader):
self.loader = loader
self.dataiter = iter(loader)
self.stream = torch.cuda.Stream()
self.mean = torch.tensor([0.485, 0.456, 0.406]).cuda().view(1,3,1,1)
self.std = torch.tensor([0.229, 0.224, 0.225]).cuda().view(1,3,1,1)
# With Amp, it isn't necessary to manually convert data to half.
# if args.fp16:
# self.mean = self.mean.half()
# self.std = self.std.half()
self.num_images = len(loader)
self.preload()
def preload(self):
try:
self.src_image1, self.src_image2 = next(self.dataiter)
except StopIteration:
self.dataiter = iter(self.loader)
self.src_image1, self.src_image2 = next(self.dataiter)
with torch.cuda.stream(self.stream):
self.src_image1 = self.src_image1.cuda(non_blocking=True)
self.src_image1 = self.src_image1.sub_(self.mean).div_(self.std)
self.src_image2 = self.src_image2.cuda(non_blocking=True)
self.src_image2 = self.src_image2.sub_(self.mean).div_(self.std)
def next(self):
torch.cuda.current_stream().wait_stream(self.stream)
src_image1 = self.src_image1
src_image2 = self.src_image2
self.preload()
return src_image1, src_image2
def __len__(self):
"""Return the number of images."""
return self.num_images
class SwappingDataset(data.Dataset):
"""Dataset class for the Artworks dataset and content dataset."""
def __init__(self,
image_dir,
img_transform,
subffix='jpg',
random_seed=1234):
"""Initialize and preprocess the Swapping dataset."""
self.image_dir = image_dir
self.img_transform = img_transform
self.subffix = subffix
self.dataset = []
self.random_seed = random_seed
self.preprocess()
self.num_images = len(self.dataset)
def preprocess(self):
"""Preprocess the Swapping dataset."""
print("processing Swapping dataset images...")
temp_path = os.path.join(self.image_dir,'*/')
pathes = glob.glob(temp_path)
self.dataset = []
for dir_item in pathes:
join_path = glob.glob(os.path.join(dir_item,'*.jpg'))
print("processing %s"%dir_item,end='\r')
temp_list = []
for item in join_path:
temp_list.append(item)
self.dataset.append(temp_list)
random.seed(self.random_seed)
random.shuffle(self.dataset)
print('Finished preprocessing the Swapping dataset, total dirs number: %d...'%len(self.dataset))
def __getitem__(self, index):
"""Return two src domain images and two dst domain images."""
dir_tmp1 = self.dataset[index]
dir_tmp1_len = len(dir_tmp1)
filename1 = dir_tmp1[random.randint(0,dir_tmp1_len-1)]
filename2 = dir_tmp1[random.randint(0,dir_tmp1_len-1)]
image1 = self.img_transform(Image.open(filename1))
image2 = self.img_transform(Image.open(filename2))
return image1, image2
def __len__(self):
"""Return the number of images."""
return self.num_images
def GetLoader( dataset_roots,
batch_size=16,
dataloader_workers=8,
random_seed = 1234
):
"""Build and return a data loader."""
num_workers = dataloader_workers
data_root = dataset_roots
random_seed = random_seed
c_transforms = []
c_transforms.append(T.ToTensor())
c_transforms = T.Compose(c_transforms)
content_dataset = SwappingDataset(
data_root,
c_transforms,
"jpg",
random_seed)
content_data_loader = data.DataLoader(dataset=content_dataset,batch_size=batch_size,
drop_last=True,shuffle=True,num_workers=num_workers,pin_memory=True)
prefetcher = data_prefetcher(content_data_loader)
return prefetcher
def denorm(x):
out = (x + 1) / 2
return out.clamp_(0, 1)