import os import glob import torch import random from PIL import Image from torch.utils import data from torchvision import transforms as T class data_prefetcher(): def __init__(self, loader): self.loader = loader self.dataiter = iter(loader) self.stream = torch.cuda.Stream() self.mean = torch.tensor([0.485, 0.456, 0.406]).cuda().view(1,3,1,1) self.std = torch.tensor([0.229, 0.224, 0.225]).cuda().view(1,3,1,1) # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.mean = self.mean.half() # self.std = self.std.half() self.num_images = len(loader) self.preload() def preload(self): try: self.src_image1, self.src_image2 = next(self.dataiter) except StopIteration: self.dataiter = iter(self.loader) self.src_image1, self.src_image2 = next(self.dataiter) with torch.cuda.stream(self.stream): self.src_image1 = self.src_image1.cuda(non_blocking=True) self.src_image1 = self.src_image1.sub_(self.mean).div_(self.std) self.src_image2 = self.src_image2.cuda(non_blocking=True) self.src_image2 = self.src_image2.sub_(self.mean).div_(self.std) def next(self): torch.cuda.current_stream().wait_stream(self.stream) src_image1 = self.src_image1 src_image2 = self.src_image2 self.preload() return src_image1, src_image2 def __len__(self): """Return the number of images.""" return self.num_images class SwappingDataset(data.Dataset): """Dataset class for the Artworks dataset and content dataset.""" def __init__(self, image_dir, img_transform, subffix='jpg', random_seed=1234): """Initialize and preprocess the Swapping dataset.""" self.image_dir = image_dir self.img_transform = img_transform self.subffix = subffix self.dataset = [] self.random_seed = random_seed self.preprocess() self.num_images = len(self.dataset) def preprocess(self): """Preprocess the Swapping dataset.""" print("processing Swapping dataset images...") temp_path = os.path.join(self.image_dir,'*/') pathes = glob.glob(temp_path) self.dataset = [] for dir_item in pathes: join_path = glob.glob(os.path.join(dir_item,'*.jpg')) print("processing %s"%dir_item,end='\r') temp_list = [] for item in join_path: temp_list.append(item) self.dataset.append(temp_list) random.seed(self.random_seed) random.shuffle(self.dataset) print('Finished preprocessing the Swapping dataset, total dirs number: %d...'%len(self.dataset)) def __getitem__(self, index): """Return two src domain images and two dst domain images.""" dir_tmp1 = self.dataset[index] dir_tmp1_len = len(dir_tmp1) filename1 = dir_tmp1[random.randint(0,dir_tmp1_len-1)] filename2 = dir_tmp1[random.randint(0,dir_tmp1_len-1)] image1 = self.img_transform(Image.open(filename1)) image2 = self.img_transform(Image.open(filename2)) return image1, image2 def __len__(self): """Return the number of images.""" return self.num_images def GetLoader( dataset_roots, batch_size=16, dataloader_workers=8, random_seed = 1234 ): """Build and return a data loader.""" num_workers = dataloader_workers data_root = dataset_roots random_seed = random_seed c_transforms = [] c_transforms.append(T.ToTensor()) c_transforms = T.Compose(c_transforms) content_dataset = SwappingDataset( data_root, c_transforms, "jpg", random_seed) content_data_loader = data.DataLoader(dataset=content_dataset,batch_size=batch_size, drop_last=True,shuffle=True,num_workers=num_workers,pin_memory=True) prefetcher = data_prefetcher(content_data_loader) return prefetcher def denorm(x): out = (x + 1) / 2 return out.clamp_(0, 1)