Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- transformers
|
9 |
+
- gguf
|
10 |
+
- imatrix
|
11 |
+
- neural-chat-7b-v3-3
|
12 |
+
---
|
13 |
+
Quantizations of https://huggingface.co/Intel/neural-chat-7b-v3-3
|
14 |
+
|
15 |
+
|
16 |
+
# From original readme
|
17 |
+
|
18 |
+
## How To Use
|
19 |
+
|
20 |
+
Context length for this model: 8192 tokens (same as https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
21 |
+
|
22 |
+
### Reproduce the model
|
23 |
+
Here is the sample code to reproduce the model: [GitHub sample code](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat/examples/finetuning/finetune_neuralchat_v3). Here is the documentation to reproduce building the model:
|
24 |
+
|
25 |
+
```bash
|
26 |
+
git clone https://github.com/intel/intel-extension-for-transformers.git
|
27 |
+
cd intel-extension-for-transformers
|
28 |
+
|
29 |
+
docker build --no-cache ./ --target hpu --build-arg REPO=https://github.com/intel/intel-extension-for-transformers.git --build-arg ITREX_VER=main -f ./intel_extension_for_transformers/neural_chat/docker/Dockerfile -t chatbot_finetuning:latest
|
30 |
+
|
31 |
+
docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host chatbot_finetuning:latest
|
32 |
+
|
33 |
+
# after entering docker container
|
34 |
+
cd examples/finetuning/finetune_neuralchat_v3
|
35 |
+
|
36 |
+
```
|
37 |
+
We select the latest pretrained mistralai/Mistral-7B-v0.1 and the open source dataset Open-Orca/SlimOrca to conduct the experiment.
|
38 |
+
|
39 |
+
The below script use deepspeed zero2 to lanuch the training with 8 cards Gaudi2. In the `finetune_neuralchat_v3.py`, the default `use_habana=True, use_lazy_mode=True, device="hpu"` for Gaudi2. And if you want to run it on NVIDIA GPU, you can set them `use_habana=False, use_lazy_mode=False, device="auto"`.
|
40 |
+
|
41 |
+
```python
|
42 |
+
deepspeed --include localhost:0,1,2,3,4,5,6,7 \
|
43 |
+
--master_port 29501 \
|
44 |
+
finetune_neuralchat_v3.py
|
45 |
+
```
|
46 |
+
|
47 |
+
Merge the LoRA weights:
|
48 |
+
|
49 |
+
```python
|
50 |
+
python apply_lora.py \
|
51 |
+
--base-model-path mistralai/Mistral-7B-v0.1 \
|
52 |
+
--lora-model-path finetuned_model/ \
|
53 |
+
--output-path finetuned_model_lora
|
54 |
+
```
|
55 |
+
|
56 |
+
### Use the model
|
57 |
+
|
58 |
+
### FP32 Inference with Transformers
|
59 |
+
|
60 |
+
```python
|
61 |
+
import transformers
|
62 |
+
|
63 |
+
|
64 |
+
model_name = 'Intel/neural-chat-7b-v3-3'
|
65 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
66 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
67 |
+
|
68 |
+
def generate_response(system_input, user_input):
|
69 |
+
|
70 |
+
# Format the input using the provided template
|
71 |
+
prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n"
|
72 |
+
|
73 |
+
# Tokenize and encode the prompt
|
74 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False)
|
75 |
+
|
76 |
+
# Generate a response
|
77 |
+
outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
|
78 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
+
|
80 |
+
# Extract only the assistant's response
|
81 |
+
return response.split("### Assistant:\n")[-1]
|
82 |
+
|
83 |
+
|
84 |
+
# Example usage
|
85 |
+
system_input = "You are a math expert assistant. Your mission is to help users understand and solve various math problems. You should provide step-by-step solutions, explain reasonings and give the correct answer."
|
86 |
+
user_input = "calculate 100 + 520 + 60"
|
87 |
+
response = generate_response(system_input, user_input)
|
88 |
+
print(response)
|
89 |
+
|
90 |
+
# expected response
|
91 |
+
"""
|
92 |
+
To calculate the sum of 100, 520, and 60, we will follow these steps:
|
93 |
+
|
94 |
+
1. Add the first two numbers: 100 + 520
|
95 |
+
2. Add the result from step 1 to the third number: (100 + 520) + 60
|
96 |
+
|
97 |
+
Step 1: Add 100 and 520
|
98 |
+
100 + 520 = 620
|
99 |
+
|
100 |
+
Step 2: Add the result from step 1 to the third number (60)
|
101 |
+
(620) + 60 = 680
|
102 |
+
|
103 |
+
So, the sum of 100, 520, and 60 is 680.
|
104 |
+
"""
|
105 |
+
```
|
106 |
+
|
107 |
+
### BF16 Inference with Intel Extension for Transformers and Intel Extension for Pytorch
|
108 |
+
```python
|
109 |
+
from transformers import AutoTokenizer, TextStreamer
|
110 |
+
import torch
|
111 |
+
from intel_extension_for_transformers.transformers import AutoModelForCausalLM
|
112 |
+
import intel_extension_for_pytorch as ipex
|
113 |
+
|
114 |
+
model_name = "Intel/neural-chat-7b-v3-3"
|
115 |
+
prompt = "Once upon a time, there existed a little girl,"
|
116 |
+
|
117 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
118 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
119 |
+
streamer = TextStreamer(tokenizer)
|
120 |
+
|
121 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
122 |
+
model = ipex.optimize(model.eval(), dtype=torch.bfloat16, inplace=True, level="O1", auto_kernel_selection=True)
|
123 |
+
|
124 |
+
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
|
125 |
+
```
|
126 |
+
|
127 |
+
### INT4 Inference with Transformers and Intel Extension for Transformers
|
128 |
+
```python
|
129 |
+
from transformers import AutoTokenizer, TextStreamer
|
130 |
+
from intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfig
|
131 |
+
model_name = "Intel/neural-chat-7b-v3-3"
|
132 |
+
|
133 |
+
# for int8, should set weight_dtype="int8"
|
134 |
+
config = WeightOnlyQuantConfig(compute_dtype="bf16", weight_dtype="int4")
|
135 |
+
prompt = "Once upon a time, there existed a little girl,"
|
136 |
+
|
137 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
138 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
139 |
+
streamer = TextStreamer(tokenizer)
|
140 |
+
|
141 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=config)
|
142 |
+
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
|
143 |
+
|
144 |
+
```
|