duyntnet commited on
Commit
dc58042
·
verified ·
1 Parent(s): e15d5b0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ inference: false
7
+ tags:
8
+ - transformers
9
+ - gguf
10
+ - imatrix
11
+ - Qwen2.5-Coder-3B-Instruct
12
+ ---
13
+ Quantizations of https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct
14
+
15
+
16
+ ### Inference Clients/UIs
17
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp)
18
+ * [KoboldCPP](https://github.com/LostRuins/koboldcpp)
19
+ * [ollama](https://github.com/ollama/ollama)
20
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
21
+ * [GPT4All](https://github.com/nomic-ai/gpt4all)
22
+ * [jan](https://github.com/janhq/jan)
23
+ ---
24
+
25
+ # From original readme
26
+
27
+ ## Introduction
28
+
29
+ Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:
30
+
31
+ - Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o.
32
+ - A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.
33
+
34
+ **This repo contains the instruction-tuned 3B Qwen2.5-Coder model**, which has the following features:
35
+ - Type: Causal Language Models
36
+ - Training Stage: Pretraining & Post-training
37
+ - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
38
+ - Number of Parameters: 3.09B
39
+ - Number of Paramaters (Non-Embedding): 2.77B
40
+ - Number of Layers: 36
41
+ - Number of Attention Heads (GQA): 16 for Q and 2 for KV
42
+ - Context Length: Full 32,768 tokens
43
+
44
+ For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186).
45
+
46
+ ## Requirements
47
+
48
+ The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
49
+
50
+ With `transformers<4.37.0`, you will encounter the following error:
51
+ ```
52
+ KeyError: 'qwen2'
53
+ ```
54
+
55
+ ## Quickstart
56
+
57
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
58
+
59
+ ```python
60
+ from transformers import AutoModelForCausalLM, AutoTokenizer
61
+
62
+ model_name = "Qwen/Qwen2.5-Coder-3B-Instruct"
63
+
64
+ model = AutoModelForCausalLM.from_pretrained(
65
+ model_name,
66
+ torch_dtype="auto",
67
+ device_map="auto"
68
+ )
69
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
70
+
71
+ prompt = "write a quick sort algorithm."
72
+ messages = [
73
+ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
74
+ {"role": "user", "content": prompt}
75
+ ]
76
+ text = tokenizer.apply_chat_template(
77
+ messages,
78
+ tokenize=False,
79
+ add_generation_prompt=True
80
+ )
81
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
82
+
83
+ generated_ids = model.generate(
84
+ **model_inputs,
85
+ max_new_tokens=512
86
+ )
87
+ generated_ids = [
88
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
89
+ ]
90
+
91
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
92
+ ```