Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- transformers
|
9 |
+
- gguf
|
10 |
+
- imatrix
|
11 |
+
- Orca-2-13b
|
12 |
+
---
|
13 |
+
Quantizations of https://huggingface.co/microsoft/Orca-2-13b
|
14 |
+
|
15 |
+
|
16 |
+
# From original readme
|
17 |
+
|
18 |
+
## Getting started with Orca 2
|
19 |
+
|
20 |
+
**Inference with Hugging Face library**
|
21 |
+
|
22 |
+
```python
|
23 |
+
import torch
|
24 |
+
import transformers
|
25 |
+
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
torch.set_default_device("cuda")
|
28 |
+
else:
|
29 |
+
torch.set_default_device("cpu")
|
30 |
+
|
31 |
+
model = transformers.AutoModelForCausalLM.from_pretrained("microsoft/Orca-2-13b", device_map='auto')
|
32 |
+
|
33 |
+
# https://github.com/huggingface/transformers/issues/27132
|
34 |
+
# please use the slow tokenizer since fast and slow tokenizer produces different tokens
|
35 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
36 |
+
"microsoft/Orca-2-13b",
|
37 |
+
use_fast=False,
|
38 |
+
)
|
39 |
+
|
40 |
+
system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
|
41 |
+
user_message = "How can you determine if a restaurant is popular among locals or mainly attracts tourists, and why might this information be useful?"
|
42 |
+
|
43 |
+
prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
|
44 |
+
|
45 |
+
inputs = tokenizer(prompt, return_tensors='pt')
|
46 |
+
output_ids = model.generate(inputs["input_ids"],)
|
47 |
+
answer = tokenizer.batch_decode(output_ids)[0]
|
48 |
+
|
49 |
+
print(answer)
|
50 |
+
|
51 |
+
# This example continues showing how to add a second turn message by the user to the conversation
|
52 |
+
second_turn_user_message = "Give me a list of the key points of your first answer."
|
53 |
+
|
54 |
+
# we set add_special_tokens=False because we dont want to automatically add a bos_token between messages
|
55 |
+
second_turn_message_in_markup = f"\n<|im_start|>user\n{second_turn_user_message}<|im_end|>\n<|im_start|>assistant"
|
56 |
+
second_turn_tokens = tokenizer(second_turn_message_in_markup, return_tensors='pt', add_special_tokens=False)
|
57 |
+
second_turn_input = torch.cat([output_ids, second_turn_tokens['input_ids']], dim=1)
|
58 |
+
|
59 |
+
output_ids_2 = model.generate(second_turn_input,)
|
60 |
+
second_turn_answer = tokenizer.batch_decode(output_ids_2)[0]
|
61 |
+
|
62 |
+
print(second_turn_answer)
|
63 |
+
```
|