Wave2Vec2_OV_Vie / README.md
duyhngoc's picture
update model card README.md
c93187e
|
raw
history blame
4.7 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - vivos
metrics:
  - wer
model-index:
  - name: Wave2Vec2_OV_Vie
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: vivos
          type: vivos
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 1

Wave2Vec2_OV_Vie

This model is a fine-tuned version of facebook/wav2vec2-base on the vivos dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5908
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.27 100 3.9210 1.0
No log 0.55 200 3.4375 1.0
No log 0.82 300 3.4356 1.0
No log 1.1 400 3.4045 1.0
4.1866 1.37 500 3.4694 1.0
4.1866 1.65 600 3.6266 1.0
4.1866 1.92 700 3.5694 1.0
4.1866 2.19 800 3.5733 1.0
4.1866 2.47 900 3.6381 1.0
3.4376 2.74 1000 3.6604 1.0
3.4376 3.02 1100 3.5868 1.0
3.4376 3.29 1200 3.4988 1.0
3.4376 3.57 1300 3.5409 1.0
3.4376 3.84 1400 3.4883 1.0
3.4365 4.12 1500 3.6125 1.0
3.4365 4.39 1600 3.6123 1.0
3.4365 4.66 1700 3.5978 1.0
3.4365 4.94 1800 3.5693 1.0
3.4365 5.21 1900 3.5659 1.0
3.4339 5.49 2000 3.6234 1.0
3.4339 5.76 2100 3.5997 1.0
3.4339 6.04 2200 3.6529 1.0
3.4339 6.31 2300 3.5780 1.0
3.4339 6.58 2400 3.5844 1.0
3.4333 6.86 2500 3.5792 1.0
3.4333 7.13 2600 3.5468 1.0
3.4333 7.41 2700 3.5691 1.0
3.4333 7.68 2800 3.5408 1.0
3.4333 7.96 2900 3.5482 1.0
3.4294 8.23 3000 3.6070 1.0
3.4294 8.5 3100 3.5905 1.0
3.4294 8.78 3200 3.6018 1.0
3.4294 9.05 3300 3.6326 1.0
3.4294 9.33 3400 3.6214 1.0
3.4293 9.6 3500 3.6372 1.0
3.4293 9.88 3600 3.6215 1.0
3.4293 10.15 3700 3.5106 1.0
3.4293 10.43 3800 3.5066 1.0
3.4293 10.7 3900 3.5352 1.0
3.4295 10.97 4000 3.5129 1.0
3.4295 11.25 4100 3.6384 1.0
3.4295 11.52 4200 3.6019 1.0
3.4295 11.8 4300 3.5876 1.0
3.4295 12.07 4400 3.6207 1.0
3.4252 12.35 4500 3.5998 1.0
3.4252 12.62 4600 3.6216 1.0
3.4252 12.89 4700 3.6073 1.0
3.4252 13.17 4800 3.5567 1.0
3.4252 13.44 4900 3.5745 1.0
3.4274 13.72 5000 3.5738 1.0
3.4274 13.99 5100 3.5914 1.0
3.4274 14.27 5200 3.6004 1.0
3.4274 14.54 5300 3.5968 1.0
3.4274 14.81 5400 3.5908 1.0

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.0
  • Tokenizers 0.13.3