dumperize's picture
Create README.md
b7085f5
|
raw
history blame
4.5 kB
---
license: apache-2.0
language:
- ru
metrics:
- bleu
pipeline_tag: image-to-text
---
# Model Card for Model ID
This model generate a description for movie posters ... mm, in principle, for any photo.
# Model Details
## Model Description
This is an encoder decoder model based on [VisionEncoderDecoderModel](https://huggingface.co/docs/transformers/model_doc/vision-encoder-decoder).
[Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) was used as encoder, [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) as decoder.
We refined the model on the dataset with descriptions and movie posters by russian app Kinoposk. Now the model generates descriptions on the jargon of blockbusters =).
## Model Sources
- **Repository:** [github.com/slivka83](https://github.com/slivka83/)
- **Demo [optional]:** [@MPC_project_bot](https://t.me/MPC_project_bot)
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
We compiled a dataset from the open source of all Russian-language films for October 2022 - [kinopoisk](https://www.kinopoisk.ru/). Films with very short or very long descriptions were not included in the dataset, films with blank or very small images were excluded too.
### Preprocessing
The model was trained on 8 16 GB V100 for 90 hours.
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
### Summary
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
[More Information Needed]
</details>