Create handler.py
Browse files- handler.py +69 -0
handler.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class EndpointHandler:
|
9 |
+
def __init__(self, path=""):
|
10 |
+
# load model and processor from path
|
11 |
+
self.processor = AutoProcessor.from_pretrained(path)
|
12 |
+
|
13 |
+
# Check if CUDA is available, and set the device accordingly
|
14 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
# Load the model to the device
|
17 |
+
self.model = MusicgenForConditionalGeneration.from_pretrained(path)
|
18 |
+
self.model.to(self.device) # Correcting this line
|
19 |
+
|
20 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
21 |
+
"""
|
22 |
+
Args:
|
23 |
+
data (:dict:):
|
24 |
+
The payload with the text prompt and generation parameters.
|
25 |
+
"""
|
26 |
+
# process input
|
27 |
+
inputs = data.pop("inputs", data)
|
28 |
+
parameters = data.pop("parameters", None)
|
29 |
+
duration = parameters.pop("duration", None)
|
30 |
+
audio = parameters.pop("audio", None)
|
31 |
+
sampling_rate = parameters.pop("sampling_rate", None)
|
32 |
+
|
33 |
+
if audio is not None:
|
34 |
+
audio_list = json.loads(audio)
|
35 |
+
audio_array = np.array(audio_list)
|
36 |
+
audio = audio_array
|
37 |
+
|
38 |
+
if duration is not None:
|
39 |
+
# Calculate max new tokens based on duration, this is a placeholder, replace with actual logic
|
40 |
+
max_new_tokens = int(duration * 50)
|
41 |
+
else:
|
42 |
+
max_new_tokens = 256 # Default value if duration is not provided
|
43 |
+
|
44 |
+
# preprocess
|
45 |
+
inputs = self.processor(
|
46 |
+
text=[inputs],
|
47 |
+
padding=True,
|
48 |
+
return_tensors="pt",
|
49 |
+
audio=audio,
|
50 |
+
sampling_rate=sampling_rate).to(self.device)
|
51 |
+
|
52 |
+
# If 'duration' is inside 'parameters', remove it
|
53 |
+
if parameters is not None and 'duration' in parameters:
|
54 |
+
parameters.pop('duration')
|
55 |
+
if parameters is not None and 'audio' in parameters:
|
56 |
+
parameters.pop('audio')
|
57 |
+
if parameters is not None and 'sampling_rate' in parameters:
|
58 |
+
parameters.pop('sampling_rate')
|
59 |
+
|
60 |
+
# pass inputs with all kwargs in data
|
61 |
+
if parameters is not None:
|
62 |
+
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens, **parameters)
|
63 |
+
else:
|
64 |
+
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens)
|
65 |
+
|
66 |
+
# postprocess the prediction
|
67 |
+
prediction = outputs[0].cpu().numpy()
|
68 |
+
|
69 |
+
return [{"generated_text": prediction}]
|