dstefa's picture
Update README.md
b6c0f8f verified
|
raw
history blame
3.79 kB
---
license: mit
base_model: roberta-base
tags:
- stress
- classification
- glassdoor
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: >-
They also caused so much stress because some leaders valued optics over output.
example_title: Stressed 1 Example
- text: >-
Way too much work pressure.
example_title: Stressed 2 Example
- text: >-
Understaffed, lots of deck revisions, unpredictable, terrible technology.
example_title: Stressed 3 Example
- text: >-
Nice environment good work life balance.
example_title: Not Stressed 1 Example
model-index:
- name: roberta-base_topic_classification_nyt_news
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: New_York_Times_Topics
type: News
metrics:
- type: F1
name: F1
value: 0.97
- type: accuracy
name: accuracy
value: 0.97
- type: precision
name: precision
value: 0.97
- type: recall
name: recall
value: 0.97
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base_stress_classification
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glassdoor dataset based on 100000 employees' reviews.
It achieves the following results on the evaluation set:
- Loss: 0.1800
- Accuracy: 0.9647
- F1: 0.9647
- Precision: 0.9647
- Recall: 0.9647
## Training data
Training data was classified as follow:
class |Description
-|-
0 |Not Stressed
1 |Stressed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.704 | 1.0 | 8000 | 0.6933 | 0.5 | 0.3333 | 0.25 | 0.5 |
| 0.6926 | 2.0 | 16000 | 0.6980 | 0.5 | 0.3333 | 0.25 | 0.5 |
| 0.0099 | 3.0 | 24000 | 0.1800 | 0.9647 | 0.9647 | 0.9647 | 0.9647 |
| 0.2727 | 4.0 | 32000 | 0.2243 | 0.9526 | 0.9526 | 0.9527 | 0.9526 |
| 0.0618 | 5.0 | 40000 | 0.2128 | 0.9536 | 0.9536 | 0.9546 | 0.9536 |
### Model performance
-|precision|recall|f1|support
-|-|-|-|-
Not Stressed|0.96|0.97|0.97|10000
Stressed|0.97|0.96|0.97|10000
| | | |
accuracy|||0.97|20000
macro avg|0.97|0.97|0.97|20000
weighted avg|0.97|0.97|0.97|20000
### How to use roberta-base_topic_classification_nyt_news with HuggingFace
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
model = AutoModelForSequenceClassification.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news")
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
text = "They also caused so much stress because some leaders valued optics over output."
pipe(text)
[{'label': 'Stressed', 'score': 0.9959163069725037}]
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2