drewschaub's picture
End of training
b997180 verified
|
raw
history blame
2.16 kB
metadata
language:
  - ja
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: whisper-large-v3-japanese-4k-steps
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.1
          type: mozilla-foundation/common_voice_16_1
          config: ja
          split: None
          args: 'config: ja, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 1821.4909443725744

whisper-large-v3-japanese-4k-steps

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4057
  • Wer: 1821.4909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1374 1.02 1000 0.3618 1198.3182
0.0508 2.04 2000 0.3658 1755.4657
0.0206 3.05 3000 0.3904 2108.7484
0.0066 4.07 4000 0.4057 1821.4909

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2