|
--- |
|
language: |
|
- vi |
|
tags: |
|
- capitalization |
|
- punctuation |
|
- token-classification |
|
- sequence-tagger-model |
|
license: mit |
|
datasets: |
|
- oscar-corpus/OSCAR-2109 |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
--- |
|
# ✨ vibert-capitalization-punctuation |
|
This a [viBERT](https://huggingface.co/FPTAI/vibert-base-cased) model finetuned for punctuation restoration on the [OSCAR-2109](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset. |
|
The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. |
|
This model is intended for direct use as a punctuation restoration model for the general Vietnamese language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. |
|
Model restores the following punctuations -- **[. , : ? ]** |
|
The model also restores the complex upper-casing of words like *YouTube*, *MobiFone*. |
|
|
|
----------------------------------------------- |
|
## 🚋 Usage |
|
|
|
**Below is a quick way to get up and running with the model.** |
|
1. Download files from hub |
|
```python |
|
import os |
|
import shutil |
|
import sys |
|
from huggingface_hub import snapshot_download |
|
|
|
cache_dir = "./capu" |
|
def download_files(repo_id, cache_dir=None, ignore_regex=None): |
|
download_dir = snapshot_download(repo_id=repo_id, cache_dir=cache_dir, ignore_regex=ignore_regex) |
|
if cache_dir is None or download_dir == cache_dir: |
|
return download_dir |
|
|
|
file_names = os.listdir(download_dir) |
|
for file_name in file_names: |
|
shutil.move(os.path.join(download_dir, file_name), cache_dir) |
|
os.rmdir(download_dir) |
|
return cache_dir |
|
|
|
download_files(repo_id="dragonSwing/vibert-capu", cache_dir=cache_dir, ignore_regex=["*.json", "*.bin"]) |
|
sys.path.append(cache_dir) |
|
``` |
|
2. Sample python code |
|
```python |
|
import os |
|
from gec_model import GecBERTModel |
|
model = GecBERTModel( |
|
vocab_path=os.path.join(cache_dir, "vocabulary"), |
|
model_paths="dragonSwing/vibert-capu", |
|
split_chunk=True |
|
) |
|
model("theo đó thủ tướng dự kiến tiếp bộ trưởng nông nghiệp mỹ tom wilsack bộ trưởng thương mại mỹ gina raimondo bộ trưởng tài chính janet yellen gặp gỡ thượng nghị sĩ patrick leahy và một số nghị sĩ mỹ khác") |
|
# Always return list of outputs. |
|
# ['Theo đó, Thủ tướng dự kiến tiếp Bộ trưởng Nông nghiệp Mỹ Tom Wilsack, Bộ trưởng Thương mại Mỹ Gina Raimondo, Bộ trưởng Tài chính Janet Yellen, gặp gỡ Thượng nghị sĩ Patrick Leahy và một số nghị sĩ Mỹ khác.'] |
|
``` |
|
**This model can work on arbitrarily large text in Vietnamese language.** |
|
|
|
----------------------------------------------- |
|
## 📡 Training data |
|
Here is the number of product reviews we used for fine-tuning the model: |
|
| Language | Number of text samples| |
|
| -------- | ----------------- | |
|
| Vietnamese | 5,600,000 | |
|
----------------------------------------------- |
|
## 🎯 Accuracy |
|
Below is a breakdown of the performance of the model by each label on 120,000 held-out text samples: |
|
| label | precision | recall | f1-score | support| |
|
| --------- | -------------|-------- | ----------|--------| |
|
| **Upper** | 0.88 | 0.89 | 0.89 | 56497 | |
|
| **Complex-Upper** | 0.92 | 0.83 | 0.88 | 480 | |
|
| **.** | 0.81 | 0.82 | 0.82 | 18139 | |
|
| **,** | 0.73 | 0.70 | 0.71 | 22961 | |
|
| **:** | 0.74 | 0.56 | 0.64 | 1432 | |
|
| **?** | 0.80 | 0.76 | 0.78 | 1730 | |
|
| **none** | 0.99 | 0.99 | 0.99 |475611 | |
|
----------------------------------------------- |
|
|